Consolidation problems in freight transportation systems: mathematical models and algorithms

Detalhes bibliográficos
Autor(a) principal: Castellucci, Pedro Belin
Data de Publicação: 2019
Tipo de documento: Tese
Idioma: eng
Título da fonte: Biblioteca Digital de Teses e Dissertações da USP
Texto Completo: http://www.teses.usp.br/teses/disponiveis/55/55134/tde-18092019-162716/
Resumo: Freight distribution systems are under stress. With the world population growing, the migration of people to urban areas and technologies that allow purchases from virtually anywhere, efficient freight distribution can be challenging. An inefficient movement of goods may lead to business not being economically viable and also has social and environmental negative effects. An important strategy to be incorporated in freight distribution systems is the consolidation of goods, i.e., group goods by their destination. This strategy increases vehicles utilisation, reducing the number of vehicles and the number of trips required for the distribution and, consequently, costs, traffic, noise and air pollution. In this thesis, we explore consolidation in three different contexts (or cases) from an optimisation point of view. Each context is related to optimisation problems for which we developed mathematical programming models and solution methods. The first case in which we explore consolidation is in container loading problems (CLPs). CLPs are a class of packing problems which aims at positioning three-dimensional boxes inside a container efficiently. The literature has incorporated many practical aspects into container loading solution method (e.g. restricting orientation of boxes, stability and weight distribution). However, to the best of our knowledge, the case considering more dynamic systems (e.g. cross-docking) in which goods might have a schedule of arrival were yet to be contemplated by the literature. We define an extension of CLP which we call Container Loading Problem with Time Availability Constraints (CLPTAC), which considers boxes are not always available for loading. We propose an extension of a CLP model that is suitable for CLPTAC and solution methods which can also handle cases with uncertainty in the schedule of the arrival of the boxes. The second case is a more broad view of the network, considering an open vehicle routing problem with cross-dock selection. The traditional vehicle routing problem has been fairly studied. Its open version (i.e. with routes that start and end at different points) has not received the same attention. We propose a version of the open vehicle routing problem in which some nodes of the network are consolidation centres. Instead of shippers sending goods directly to their consumers, they must send to one of the available consolidation centres, then, goods are resorted and forwarded to their destination. For this problem, we propose a mixed integer linear programming model for cost minimisation and a solution method based on the Benders decomposition framework. A third case in which we explored consolidation is in collaborative logistics. Particularly, we focus on the shared use of the currently available infrastructure. We defined a hub selection problem in which one of the suppliers is selected as a hub. In a hub facility, other suppliers might meet to exchange their goods allowing one supplier to satisfy the demand from others. For this problem, we propose a mixed integer linear programming model and a heuristic based on the model. Moreover, we compared a traditional distribution strategy, with each supplier handling its demand, against the collaborative one. In this thesis, we explore these three cases which are related to consolidation for improving the efficiency in freight distribution systems. We extend some problems (e.g. versions of CLP) to apply them to a more dynamic setting and we also define optimisation problems for networks with consolidation centres. Furthermore, we propose solution methods for each of the defined problems and evaluate them using randomly generated instances, benchmarks from the literature and some cases based on real-world characteristics.
id USP_4983cfdfeee0678d99e07075bbce0c5b
oai_identifier_str oai:teses.usp.br:tde-18092019-162716
network_acronym_str USP
network_name_str Biblioteca Digital de Teses e Dissertações da USP
repository_id_str 2721
spelling Consolidation problems in freight transportation systems: mathematical models and algorithmsProblemas de consolidação em sistemas de transportes: modelos matemáticos e algoritmosCarregamento de contêineresColaborative logisticsContainer loadingCross-dockingCrossdockingFreight transportationLogística colaborativaOptimisationOtimizaçãoTransporte de cargaFreight distribution systems are under stress. With the world population growing, the migration of people to urban areas and technologies that allow purchases from virtually anywhere, efficient freight distribution can be challenging. An inefficient movement of goods may lead to business not being economically viable and also has social and environmental negative effects. An important strategy to be incorporated in freight distribution systems is the consolidation of goods, i.e., group goods by their destination. This strategy increases vehicles utilisation, reducing the number of vehicles and the number of trips required for the distribution and, consequently, costs, traffic, noise and air pollution. In this thesis, we explore consolidation in three different contexts (or cases) from an optimisation point of view. Each context is related to optimisation problems for which we developed mathematical programming models and solution methods. The first case in which we explore consolidation is in container loading problems (CLPs). CLPs are a class of packing problems which aims at positioning three-dimensional boxes inside a container efficiently. The literature has incorporated many practical aspects into container loading solution method (e.g. restricting orientation of boxes, stability and weight distribution). However, to the best of our knowledge, the case considering more dynamic systems (e.g. cross-docking) in which goods might have a schedule of arrival were yet to be contemplated by the literature. We define an extension of CLP which we call Container Loading Problem with Time Availability Constraints (CLPTAC), which considers boxes are not always available for loading. We propose an extension of a CLP model that is suitable for CLPTAC and solution methods which can also handle cases with uncertainty in the schedule of the arrival of the boxes. The second case is a more broad view of the network, considering an open vehicle routing problem with cross-dock selection. The traditional vehicle routing problem has been fairly studied. Its open version (i.e. with routes that start and end at different points) has not received the same attention. We propose a version of the open vehicle routing problem in which some nodes of the network are consolidation centres. Instead of shippers sending goods directly to their consumers, they must send to one of the available consolidation centres, then, goods are resorted and forwarded to their destination. For this problem, we propose a mixed integer linear programming model for cost minimisation and a solution method based on the Benders decomposition framework. A third case in which we explored consolidation is in collaborative logistics. Particularly, we focus on the shared use of the currently available infrastructure. We defined a hub selection problem in which one of the suppliers is selected as a hub. In a hub facility, other suppliers might meet to exchange their goods allowing one supplier to satisfy the demand from others. For this problem, we propose a mixed integer linear programming model and a heuristic based on the model. Moreover, we compared a traditional distribution strategy, with each supplier handling its demand, against the collaborative one. In this thesis, we explore these three cases which are related to consolidation for improving the efficiency in freight distribution systems. We extend some problems (e.g. versions of CLP) to apply them to a more dynamic setting and we also define optimisation problems for networks with consolidation centres. Furthermore, we propose solution methods for each of the defined problems and evaluate them using randomly generated instances, benchmarks from the literature and some cases based on real-world characteristics.Sistemas de distribuição de carga possuem uma demanda muito alta. Com a população mundial crescendo, a migração em direção às áreas urbanas e as tecnologias que permitem compras de virtualmente qualquer lugar, a distribuição eficiente de mercadorias pode ser um desafio. Uma movimentação ineficiente de mercadorias pode tornar negócios economicamente inviáveis além de ter um impacto social e ambiental negativos. Uma estratégia importante para se incorporar em sistemas de distribuição é a consolidação de cargas, isto é, agrupar cargas de acordo com seus destinos. Essa estratégia aumenta a utilização dos veículos, reduzindo o número de veículos e viagens necessários para a distribuição e, consequentemente, custos, tráfego, poluição sonora e do ar. Nesta tese, é explorada a técnica de consolidação em três casos diferentes de um ponto de vista de otimização. Cada caso é relacionado a problemas de otimização para os quais são propostos modelos de programação matemática e métodos de solução. O primeiro caso em que é explorada a consolidação é em Problemas de Carregamento de Contêineres (PCCs). PCCs pertencem a uma classe de problemas de empacotamento que visa posicionar caixas tridimensionais dentro de contêineres eficientemente. A literatura tem incorporado diversos aspectos práticos em procedimentos de solução dos PCCs (por exemplo, restringir a orientação das caixas, estabilidade e distribuição de peso). No entanto, o caso que considera sistemas logísticos mais dinâmicos (como cross-docking), nos quais mercadorias podem ter uma agenda de chegada ainda não havia sido contemplados. É definida uma extensão de PCC chamada de Problema de Carregamento de Contêieneres com Restrições de Disponibilidade Temporal (PCCRDT). Também, propõem-se modelos e métodos de solução para o PCCRDT que são capazes de lidar com incerteza na chegada das mercadorias. O segundo caso utiliza uma visão mais abrangente da rede de distribuição, considerando um problema de roteamento de veículos em rede aberta com seleção de cross-dock. O problema tradicional de roteamento de veículos é bastante estudado. A sua versão aberta (com rotas que começam e terminam em pontos diferentes) não tem recebido tanta atenção. É proposta uma versão do roteamento de veículos em rede aberta em que alguns nós da rede são centros de consolidação. Os fornecedores, ao invés de enviar as mercadorias diretamente para os consumidores, enviam-nas para um dos centros de consolidação disponíveis, então, as mercadorias são reorganizadas (em diferentes veículos) e encaminhadas para o seus destinos. Para esse problema, é proposto um modelo de programação linear inteira mista para a minimização de custo e um método de solução baseado no arcabouço de decomposição de Benders. Um terceiro caso em que foi explorada a consolidação de mercadorias é o de logística colaborativa. Particularmente, se concentrou no uso compartilhado de infra-estrutura já disponível na rede de distribuição. É definido um problema de seleção de seleção de um dos fornecedores como hub. No hub, outros fornecedores podem se encontrar para trocar suas mercadorias, permitindo que um fornecedor satisfaça a demanda de outro. Para esse problema, é proposto um modelo de programação linear inteira mista e uma heurística baseada no modelo. Ainda, é comparada uma estratégia de distribuição convencional (com cada fornecedor responsável pela sua própria demanda) com uma estratégia colaborativa. Nesta tese, são explorados esses três casos que se relacionam com consolidação para melhorar a eficiência de sistemas de distribuição de carga. São estendidos alguns problemas (como o PCC) para que se possa aplicá-los em cenários mais dinâmicos e também são definidos problemas de otimização em redes com centros de consolidação. Além disso, são propostos métodos de solução para cada um dos casos. Os métodos são avaliados em instâncias geradas aleatoriamente, instâncias da literatura e, em alguns casos, instâncias baseadas em cenários reais.Biblioteca Digitais de Teses e Dissertações da USPCosta, Alysson MachadoToledo, Franklina Maria Bragion deCastellucci, Pedro Belin2019-08-12info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfhttp://www.teses.usp.br/teses/disponiveis/55/55134/tde-18092019-162716/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesseng2019-11-08T22:16:16Zoai:teses.usp.br:tde-18092019-162716Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212019-11-08T22:16:16Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false
dc.title.none.fl_str_mv Consolidation problems in freight transportation systems: mathematical models and algorithms
Problemas de consolidação em sistemas de transportes: modelos matemáticos e algoritmos
title Consolidation problems in freight transportation systems: mathematical models and algorithms
spellingShingle Consolidation problems in freight transportation systems: mathematical models and algorithms
Castellucci, Pedro Belin
Carregamento de contêineres
Colaborative logistics
Container loading
Cross-docking
Crossdocking
Freight transportation
Logística colaborativa
Optimisation
Otimização
Transporte de carga
title_short Consolidation problems in freight transportation systems: mathematical models and algorithms
title_full Consolidation problems in freight transportation systems: mathematical models and algorithms
title_fullStr Consolidation problems in freight transportation systems: mathematical models and algorithms
title_full_unstemmed Consolidation problems in freight transportation systems: mathematical models and algorithms
title_sort Consolidation problems in freight transportation systems: mathematical models and algorithms
author Castellucci, Pedro Belin
author_facet Castellucci, Pedro Belin
author_role author
dc.contributor.none.fl_str_mv Costa, Alysson Machado
Toledo, Franklina Maria Bragion de
dc.contributor.author.fl_str_mv Castellucci, Pedro Belin
dc.subject.por.fl_str_mv Carregamento de contêineres
Colaborative logistics
Container loading
Cross-docking
Crossdocking
Freight transportation
Logística colaborativa
Optimisation
Otimização
Transporte de carga
topic Carregamento de contêineres
Colaborative logistics
Container loading
Cross-docking
Crossdocking
Freight transportation
Logística colaborativa
Optimisation
Otimização
Transporte de carga
description Freight distribution systems are under stress. With the world population growing, the migration of people to urban areas and technologies that allow purchases from virtually anywhere, efficient freight distribution can be challenging. An inefficient movement of goods may lead to business not being economically viable and also has social and environmental negative effects. An important strategy to be incorporated in freight distribution systems is the consolidation of goods, i.e., group goods by their destination. This strategy increases vehicles utilisation, reducing the number of vehicles and the number of trips required for the distribution and, consequently, costs, traffic, noise and air pollution. In this thesis, we explore consolidation in three different contexts (or cases) from an optimisation point of view. Each context is related to optimisation problems for which we developed mathematical programming models and solution methods. The first case in which we explore consolidation is in container loading problems (CLPs). CLPs are a class of packing problems which aims at positioning three-dimensional boxes inside a container efficiently. The literature has incorporated many practical aspects into container loading solution method (e.g. restricting orientation of boxes, stability and weight distribution). However, to the best of our knowledge, the case considering more dynamic systems (e.g. cross-docking) in which goods might have a schedule of arrival were yet to be contemplated by the literature. We define an extension of CLP which we call Container Loading Problem with Time Availability Constraints (CLPTAC), which considers boxes are not always available for loading. We propose an extension of a CLP model that is suitable for CLPTAC and solution methods which can also handle cases with uncertainty in the schedule of the arrival of the boxes. The second case is a more broad view of the network, considering an open vehicle routing problem with cross-dock selection. The traditional vehicle routing problem has been fairly studied. Its open version (i.e. with routes that start and end at different points) has not received the same attention. We propose a version of the open vehicle routing problem in which some nodes of the network are consolidation centres. Instead of shippers sending goods directly to their consumers, they must send to one of the available consolidation centres, then, goods are resorted and forwarded to their destination. For this problem, we propose a mixed integer linear programming model for cost minimisation and a solution method based on the Benders decomposition framework. A third case in which we explored consolidation is in collaborative logistics. Particularly, we focus on the shared use of the currently available infrastructure. We defined a hub selection problem in which one of the suppliers is selected as a hub. In a hub facility, other suppliers might meet to exchange their goods allowing one supplier to satisfy the demand from others. For this problem, we propose a mixed integer linear programming model and a heuristic based on the model. Moreover, we compared a traditional distribution strategy, with each supplier handling its demand, against the collaborative one. In this thesis, we explore these three cases which are related to consolidation for improving the efficiency in freight distribution systems. We extend some problems (e.g. versions of CLP) to apply them to a more dynamic setting and we also define optimisation problems for networks with consolidation centres. Furthermore, we propose solution methods for each of the defined problems and evaluate them using randomly generated instances, benchmarks from the literature and some cases based on real-world characteristics.
publishDate 2019
dc.date.none.fl_str_mv 2019-08-12
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://www.teses.usp.br/teses/disponiveis/55/55134/tde-18092019-162716/
url http://www.teses.usp.br/teses/disponiveis/55/55134/tde-18092019-162716/
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv
dc.rights.driver.fl_str_mv Liberar o conteúdo para acesso público.
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Liberar o conteúdo para acesso público.
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.coverage.none.fl_str_mv
dc.publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
dc.source.none.fl_str_mv
reponame:Biblioteca Digital de Teses e Dissertações da USP
instname:Universidade de São Paulo (USP)
instacron:USP
instname_str Universidade de São Paulo (USP)
instacron_str USP
institution USP
reponame_str Biblioteca Digital de Teses e Dissertações da USP
collection Biblioteca Digital de Teses e Dissertações da USP
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)
repository.mail.fl_str_mv virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br
_version_ 1815257112494735360