Improving accuracy of genomic prediction in maize single-crosses through different kernels and reducing the marker dataset

Detalhes bibliográficos
Autor(a) principal: Sousa, Massáine Bandeira e
Data de Publicação: 2017
Tipo de documento: Tese
Idioma: eng
Título da fonte: Biblioteca Digital de Teses e Dissertações da USP
Texto Completo: http://www.teses.usp.br/teses/disponiveis/11/11137/tde-07032018-163203/
Resumo: In plant breeding, genomic prediction (GP) may be an efficient tool to increase the accuracy of selecting genotypes, mainly, under multi-environments trials. This approach has the advantage to increase genetic gains of complex traits and reduce costs. However, strategies are needed to increase the accuracy and reduce the bias of genomic estimated breeding values. In this context, the objectives were: i) to compare two strategies to obtain markers subsets based on marker effect regarding their impact on the prediction accuracy of genome selection; and, ii) to compare the accuracy of four GP methods including genotype × environment interaction and two kernels (GBLUP and Gaussian). We used a rice diversity panel (RICE) and two maize datasets (HEL and USP). These were evaluated for grain yield and plant height. Overall, the prediction accuracy and relative efficiency of genomic selection were increased using markers subsets, which has the potential for build fixed arrays and reduce costs with genotyping. Furthermore, using Gaussian kernel and the including G×E effect, there is an increase in the accuracy of the genomic prediction models.
id USP_49aba5cadb756d9e665679edb7261cc1
oai_identifier_str oai:teses.usp.br:tde-07032018-163203
network_acronym_str USP
network_name_str Biblioteca Digital de Teses e Dissertações da USP
repository_id_str 2721
spelling Improving accuracy of genomic prediction in maize single-crosses through different kernels and reducing the marker datasetAprimorando a acurácia da predição genômica em híbridos de milho através de diferentes kernels e redução do subconjunto de marcadoresGaussian kernelGBLUPGBLUPGenomic selectionGenotype × environment interactionInteração genótipo x ambienteKernel GaussianoSeleção genômicaIn plant breeding, genomic prediction (GP) may be an efficient tool to increase the accuracy of selecting genotypes, mainly, under multi-environments trials. This approach has the advantage to increase genetic gains of complex traits and reduce costs. However, strategies are needed to increase the accuracy and reduce the bias of genomic estimated breeding values. In this context, the objectives were: i) to compare two strategies to obtain markers subsets based on marker effect regarding their impact on the prediction accuracy of genome selection; and, ii) to compare the accuracy of four GP methods including genotype × environment interaction and two kernels (GBLUP and Gaussian). We used a rice diversity panel (RICE) and two maize datasets (HEL and USP). These were evaluated for grain yield and plant height. Overall, the prediction accuracy and relative efficiency of genomic selection were increased using markers subsets, which has the potential for build fixed arrays and reduce costs with genotyping. Furthermore, using Gaussian kernel and the including G×E effect, there is an increase in the accuracy of the genomic prediction models.No melhoramento de plantas, a predição genômica (PG) é uma eficiente ferramenta para aumentar a eficiência seletiva de genótipos, principalmente, considerando múltiplos ambientes. Esta técnica tem como vantagem incrementar o ganho genético para características complexas e reduzir os custos. Entretanto, ainda são necessárias estratégias que aumentem a acurácia e reduzam o viés dos valores genéticos genotípicos. Nesse contexto, os objetivos foram: i) comparar duas estratégias para obtenção de subconjuntos de marcadores baseado em seus efeitos em relação ao seu impacto na acurácia da seleção genômica; ii) comparar a acurácia seletiva de quatro modelos de PG incluindo o efeito de interação genótipo × ambiente (G×A) e dois kernels (GBLUP e Gaussiano). Para isso, foram usados dados de um painel de diversidade de arroz (RICE) e dois conjuntos de dados de milho (HEL e USP). Estes foram avaliados para produtividade de grãos e altura de plantas. Em geral, houve incremento da acurácia de predição e na eficiência da seleção genômica usando subconjuntos de marcadores. Estes poderiam ser utilizados para construção de arrays e, consequentemente, reduzir os custos com genotipagem. Além disso, utilizando o kernel Gaussiano e incluindo o efeito de interação G×A há aumento na acurácia dos modelos de predição genômica.Biblioteca Digitais de Teses e Dissertações da USPFritsche Neto, RobertoSousa, Massáine Bandeira e2017-08-09info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfhttp://www.teses.usp.br/teses/disponiveis/11/11137/tde-07032018-163203/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesseng2018-07-19T20:50:39Zoai:teses.usp.br:tde-07032018-163203Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212018-07-19T20:50:39Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false
dc.title.none.fl_str_mv Improving accuracy of genomic prediction in maize single-crosses through different kernels and reducing the marker dataset
Aprimorando a acurácia da predição genômica em híbridos de milho através de diferentes kernels e redução do subconjunto de marcadores
title Improving accuracy of genomic prediction in maize single-crosses through different kernels and reducing the marker dataset
spellingShingle Improving accuracy of genomic prediction in maize single-crosses through different kernels and reducing the marker dataset
Sousa, Massáine Bandeira e
Gaussian kernel
GBLUP
GBLUP
Genomic selection
Genotype × environment interaction
Interação genótipo x ambiente
Kernel Gaussiano
Seleção genômica
title_short Improving accuracy of genomic prediction in maize single-crosses through different kernels and reducing the marker dataset
title_full Improving accuracy of genomic prediction in maize single-crosses through different kernels and reducing the marker dataset
title_fullStr Improving accuracy of genomic prediction in maize single-crosses through different kernels and reducing the marker dataset
title_full_unstemmed Improving accuracy of genomic prediction in maize single-crosses through different kernels and reducing the marker dataset
title_sort Improving accuracy of genomic prediction in maize single-crosses through different kernels and reducing the marker dataset
author Sousa, Massáine Bandeira e
author_facet Sousa, Massáine Bandeira e
author_role author
dc.contributor.none.fl_str_mv Fritsche Neto, Roberto
dc.contributor.author.fl_str_mv Sousa, Massáine Bandeira e
dc.subject.por.fl_str_mv Gaussian kernel
GBLUP
GBLUP
Genomic selection
Genotype × environment interaction
Interação genótipo x ambiente
Kernel Gaussiano
Seleção genômica
topic Gaussian kernel
GBLUP
GBLUP
Genomic selection
Genotype × environment interaction
Interação genótipo x ambiente
Kernel Gaussiano
Seleção genômica
description In plant breeding, genomic prediction (GP) may be an efficient tool to increase the accuracy of selecting genotypes, mainly, under multi-environments trials. This approach has the advantage to increase genetic gains of complex traits and reduce costs. However, strategies are needed to increase the accuracy and reduce the bias of genomic estimated breeding values. In this context, the objectives were: i) to compare two strategies to obtain markers subsets based on marker effect regarding their impact on the prediction accuracy of genome selection; and, ii) to compare the accuracy of four GP methods including genotype × environment interaction and two kernels (GBLUP and Gaussian). We used a rice diversity panel (RICE) and two maize datasets (HEL and USP). These were evaluated for grain yield and plant height. Overall, the prediction accuracy and relative efficiency of genomic selection were increased using markers subsets, which has the potential for build fixed arrays and reduce costs with genotyping. Furthermore, using Gaussian kernel and the including G×E effect, there is an increase in the accuracy of the genomic prediction models.
publishDate 2017
dc.date.none.fl_str_mv 2017-08-09
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://www.teses.usp.br/teses/disponiveis/11/11137/tde-07032018-163203/
url http://www.teses.usp.br/teses/disponiveis/11/11137/tde-07032018-163203/
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv
dc.rights.driver.fl_str_mv Liberar o conteúdo para acesso público.
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Liberar o conteúdo para acesso público.
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.coverage.none.fl_str_mv
dc.publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
dc.source.none.fl_str_mv
reponame:Biblioteca Digital de Teses e Dissertações da USP
instname:Universidade de São Paulo (USP)
instacron:USP
instname_str Universidade de São Paulo (USP)
instacron_str USP
institution USP
reponame_str Biblioteca Digital de Teses e Dissertações da USP
collection Biblioteca Digital de Teses e Dissertações da USP
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)
repository.mail.fl_str_mv virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br
_version_ 1815256778324049920