Improving accuracy of genomic prediction in maize single-crosses through different kernels and reducing the marker dataset
Autor(a) principal: | |
---|---|
Data de Publicação: | 2017 |
Tipo de documento: | Tese |
Idioma: | eng |
Título da fonte: | Biblioteca Digital de Teses e Dissertações da USP |
Texto Completo: | http://www.teses.usp.br/teses/disponiveis/11/11137/tde-07032018-163203/ |
Resumo: | In plant breeding, genomic prediction (GP) may be an efficient tool to increase the accuracy of selecting genotypes, mainly, under multi-environments trials. This approach has the advantage to increase genetic gains of complex traits and reduce costs. However, strategies are needed to increase the accuracy and reduce the bias of genomic estimated breeding values. In this context, the objectives were: i) to compare two strategies to obtain markers subsets based on marker effect regarding their impact on the prediction accuracy of genome selection; and, ii) to compare the accuracy of four GP methods including genotype × environment interaction and two kernels (GBLUP and Gaussian). We used a rice diversity panel (RICE) and two maize datasets (HEL and USP). These were evaluated for grain yield and plant height. Overall, the prediction accuracy and relative efficiency of genomic selection were increased using markers subsets, which has the potential for build fixed arrays and reduce costs with genotyping. Furthermore, using Gaussian kernel and the including G×E effect, there is an increase in the accuracy of the genomic prediction models. |
id |
USP_49aba5cadb756d9e665679edb7261cc1 |
---|---|
oai_identifier_str |
oai:teses.usp.br:tde-07032018-163203 |
network_acronym_str |
USP |
network_name_str |
Biblioteca Digital de Teses e Dissertações da USP |
repository_id_str |
2721 |
spelling |
Improving accuracy of genomic prediction in maize single-crosses through different kernels and reducing the marker datasetAprimorando a acurácia da predição genômica em híbridos de milho através de diferentes kernels e redução do subconjunto de marcadoresGaussian kernelGBLUPGBLUPGenomic selectionGenotype × environment interactionInteração genótipo x ambienteKernel GaussianoSeleção genômicaIn plant breeding, genomic prediction (GP) may be an efficient tool to increase the accuracy of selecting genotypes, mainly, under multi-environments trials. This approach has the advantage to increase genetic gains of complex traits and reduce costs. However, strategies are needed to increase the accuracy and reduce the bias of genomic estimated breeding values. In this context, the objectives were: i) to compare two strategies to obtain markers subsets based on marker effect regarding their impact on the prediction accuracy of genome selection; and, ii) to compare the accuracy of four GP methods including genotype × environment interaction and two kernels (GBLUP and Gaussian). We used a rice diversity panel (RICE) and two maize datasets (HEL and USP). These were evaluated for grain yield and plant height. Overall, the prediction accuracy and relative efficiency of genomic selection were increased using markers subsets, which has the potential for build fixed arrays and reduce costs with genotyping. Furthermore, using Gaussian kernel and the including G×E effect, there is an increase in the accuracy of the genomic prediction models.No melhoramento de plantas, a predição genômica (PG) é uma eficiente ferramenta para aumentar a eficiência seletiva de genótipos, principalmente, considerando múltiplos ambientes. Esta técnica tem como vantagem incrementar o ganho genético para características complexas e reduzir os custos. Entretanto, ainda são necessárias estratégias que aumentem a acurácia e reduzam o viés dos valores genéticos genotípicos. Nesse contexto, os objetivos foram: i) comparar duas estratégias para obtenção de subconjuntos de marcadores baseado em seus efeitos em relação ao seu impacto na acurácia da seleção genômica; ii) comparar a acurácia seletiva de quatro modelos de PG incluindo o efeito de interação genótipo × ambiente (G×A) e dois kernels (GBLUP e Gaussiano). Para isso, foram usados dados de um painel de diversidade de arroz (RICE) e dois conjuntos de dados de milho (HEL e USP). Estes foram avaliados para produtividade de grãos e altura de plantas. Em geral, houve incremento da acurácia de predição e na eficiência da seleção genômica usando subconjuntos de marcadores. Estes poderiam ser utilizados para construção de arrays e, consequentemente, reduzir os custos com genotipagem. Além disso, utilizando o kernel Gaussiano e incluindo o efeito de interação G×A há aumento na acurácia dos modelos de predição genômica.Biblioteca Digitais de Teses e Dissertações da USPFritsche Neto, RobertoSousa, Massáine Bandeira e2017-08-09info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfhttp://www.teses.usp.br/teses/disponiveis/11/11137/tde-07032018-163203/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesseng2018-07-19T20:50:39Zoai:teses.usp.br:tde-07032018-163203Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212018-07-19T20:50:39Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false |
dc.title.none.fl_str_mv |
Improving accuracy of genomic prediction in maize single-crosses through different kernels and reducing the marker dataset Aprimorando a acurácia da predição genômica em híbridos de milho através de diferentes kernels e redução do subconjunto de marcadores |
title |
Improving accuracy of genomic prediction in maize single-crosses through different kernels and reducing the marker dataset |
spellingShingle |
Improving accuracy of genomic prediction in maize single-crosses through different kernels and reducing the marker dataset Sousa, Massáine Bandeira e Gaussian kernel GBLUP GBLUP Genomic selection Genotype × environment interaction Interação genótipo x ambiente Kernel Gaussiano Seleção genômica |
title_short |
Improving accuracy of genomic prediction in maize single-crosses through different kernels and reducing the marker dataset |
title_full |
Improving accuracy of genomic prediction in maize single-crosses through different kernels and reducing the marker dataset |
title_fullStr |
Improving accuracy of genomic prediction in maize single-crosses through different kernels and reducing the marker dataset |
title_full_unstemmed |
Improving accuracy of genomic prediction in maize single-crosses through different kernels and reducing the marker dataset |
title_sort |
Improving accuracy of genomic prediction in maize single-crosses through different kernels and reducing the marker dataset |
author |
Sousa, Massáine Bandeira e |
author_facet |
Sousa, Massáine Bandeira e |
author_role |
author |
dc.contributor.none.fl_str_mv |
Fritsche Neto, Roberto |
dc.contributor.author.fl_str_mv |
Sousa, Massáine Bandeira e |
dc.subject.por.fl_str_mv |
Gaussian kernel GBLUP GBLUP Genomic selection Genotype × environment interaction Interação genótipo x ambiente Kernel Gaussiano Seleção genômica |
topic |
Gaussian kernel GBLUP GBLUP Genomic selection Genotype × environment interaction Interação genótipo x ambiente Kernel Gaussiano Seleção genômica |
description |
In plant breeding, genomic prediction (GP) may be an efficient tool to increase the accuracy of selecting genotypes, mainly, under multi-environments trials. This approach has the advantage to increase genetic gains of complex traits and reduce costs. However, strategies are needed to increase the accuracy and reduce the bias of genomic estimated breeding values. In this context, the objectives were: i) to compare two strategies to obtain markers subsets based on marker effect regarding their impact on the prediction accuracy of genome selection; and, ii) to compare the accuracy of four GP methods including genotype × environment interaction and two kernels (GBLUP and Gaussian). We used a rice diversity panel (RICE) and two maize datasets (HEL and USP). These were evaluated for grain yield and plant height. Overall, the prediction accuracy and relative efficiency of genomic selection were increased using markers subsets, which has the potential for build fixed arrays and reduce costs with genotyping. Furthermore, using Gaussian kernel and the including G×E effect, there is an increase in the accuracy of the genomic prediction models. |
publishDate |
2017 |
dc.date.none.fl_str_mv |
2017-08-09 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
format |
doctoralThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://www.teses.usp.br/teses/disponiveis/11/11137/tde-07032018-163203/ |
url |
http://www.teses.usp.br/teses/disponiveis/11/11137/tde-07032018-163203/ |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
|
dc.rights.driver.fl_str_mv |
Liberar o conteúdo para acesso público. info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Liberar o conteúdo para acesso público. |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.coverage.none.fl_str_mv |
|
dc.publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações da USP instname:Universidade de São Paulo (USP) instacron:USP |
instname_str |
Universidade de São Paulo (USP) |
instacron_str |
USP |
institution |
USP |
reponame_str |
Biblioteca Digital de Teses e Dissertações da USP |
collection |
Biblioteca Digital de Teses e Dissertações da USP |
repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP) |
repository.mail.fl_str_mv |
virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br |
_version_ |
1815256778324049920 |