Nonlinear stochastic analysis of wave energy converters via statistical linearization.
Autor(a) principal: | |
---|---|
Data de Publicação: | 2019 |
Tipo de documento: | Dissertação |
Idioma: | eng |
Título da fonte: | Biblioteca Digital de Teses e Dissertações da USP |
Texto Completo: | http://www.teses.usp.br/teses/disponiveis/3/3135/tde-08012020-161016/ |
Resumo: | Renewable sources of energy play a fundamental role to attend the constant rising in the global energy demand. The main objectives of utilizing renewable energies are to reduce the negative aspects associated with the utilization of fossil fuels and to diversify the energy mix. Among the renewable sources, ocean wave energy remains insufficiently explored and have the capacity to contribute to energy production. The use of wave energy has been promoted due to the vast and dense amount of energy and regularity in power distribution. The idea of harvesting wave energy exists for at least two centuries. However, it mostly started after the oil crisis of the 1970s. Since then, several wave energy converters were created without a predominant design, and more concepts are expected to be created. The challenges in the designing of wave energy converts rely on the dynamics of such systems and the stochastic nature of the environmental loads. As the device is usually set to operate near resonant conditions, wave energy devices exhibit large displacements, and nonlinear forces rise in the dynamics of the system. In this regard, the analysis of wave energy converters is usually conducted using time domain models to include the nonlinear effects. However, the computational cost associated with these simulations is high compared to traditional frequency domain models. In addition, several load conditions are necessary to evaluate the body response due to the stochastic characteristics of ocean waves, becoming undesirable to conduct time domain simulations. This thesis focuses on the stochastic analysis of wave energy converters in the frequency domain using the statistical linearization to evaluate the effects of nonlinear forces. The technique employed in this work offers a fast and reliable estimation of the device dynamics. Two conceptually different wave energy converters are investigated: a point absorber, and an oscillating water column. The results obtained using the statistical linearization are compared with their equivalent time domain models to verify the reliability of the technique. The results obtained show a good agreement was obtained between the statistical linearization and time domain simulations in terms of response distribution, power spectrum density, mean offsets, and mean power absorbed. However, the computational cost associated with time domain simulations was remarkably superior to the statistical linearization as expected. Therefore, the technique applied in this thesis offers a valuable approach to be used as a design tool for wave energy devices, and optimization procedures to develop the wave energy sector. |
id |
USP_4b2da09804f5ebfeb33acc71f8d4d70d |
---|---|
oai_identifier_str |
oai:teses.usp.br:tde-08012020-161016 |
network_acronym_str |
USP |
network_name_str |
Biblioteca Digital de Teses e Dissertações da USP |
repository_id_str |
2721 |
spelling |
Nonlinear stochastic analysis of wave energy converters via statistical linearization.Análise estocástica não-linear de conversores de energia das ondas através da linearização estatística.Análise estocásticaDinâmica não linearDomínio da frequênciaEnergiaEnergia das ondasFontes alternativas de energiaFontes renováveis de energiaFrequency domainLinearização estatísticaNonlinear dynamicsOndasStatistical linearizationStochastic analysisWave energyRenewable sources of energy play a fundamental role to attend the constant rising in the global energy demand. The main objectives of utilizing renewable energies are to reduce the negative aspects associated with the utilization of fossil fuels and to diversify the energy mix. Among the renewable sources, ocean wave energy remains insufficiently explored and have the capacity to contribute to energy production. The use of wave energy has been promoted due to the vast and dense amount of energy and regularity in power distribution. The idea of harvesting wave energy exists for at least two centuries. However, it mostly started after the oil crisis of the 1970s. Since then, several wave energy converters were created without a predominant design, and more concepts are expected to be created. The challenges in the designing of wave energy converts rely on the dynamics of such systems and the stochastic nature of the environmental loads. As the device is usually set to operate near resonant conditions, wave energy devices exhibit large displacements, and nonlinear forces rise in the dynamics of the system. In this regard, the analysis of wave energy converters is usually conducted using time domain models to include the nonlinear effects. However, the computational cost associated with these simulations is high compared to traditional frequency domain models. In addition, several load conditions are necessary to evaluate the body response due to the stochastic characteristics of ocean waves, becoming undesirable to conduct time domain simulations. This thesis focuses on the stochastic analysis of wave energy converters in the frequency domain using the statistical linearization to evaluate the effects of nonlinear forces. The technique employed in this work offers a fast and reliable estimation of the device dynamics. Two conceptually different wave energy converters are investigated: a point absorber, and an oscillating water column. The results obtained using the statistical linearization are compared with their equivalent time domain models to verify the reliability of the technique. The results obtained show a good agreement was obtained between the statistical linearization and time domain simulations in terms of response distribution, power spectrum density, mean offsets, and mean power absorbed. However, the computational cost associated with time domain simulations was remarkably superior to the statistical linearization as expected. Therefore, the technique applied in this thesis offers a valuable approach to be used as a design tool for wave energy devices, and optimization procedures to develop the wave energy sector.Fontes renováveis de energia desempenham um papel fundamental para atender o constante aumento da demanda de energia global. Os principais objetivos em utilizar energias renováveis são reduzir os aspectos negativos associados à utilização de combustíveis fósseis e diversificar a matriz energética. Entre as fontes renováveis, a energia das ondas oceânicas permanece insuficientemente explorada e tem a capacidade de contribuir para a produção de energia. O uso de energia das ondas tem sido promovido devido à grande e densa quantidade de energia e a regularidade na distribuição de energia. A ideia de coletar a energia das ondas existe há pelo menos dois séculos. No entanto, a extração começou principalmente após a crise do petróleo da década de 1970. Desde então, vários conversores de energia das ondas foram criados sem um design predominante, e espera-se que mais conceitos sejam criados. Os desafios em projetar dispositivos de conversão da energia das ondas ocorre devido à dinâmica desse sistema e da natureza estocástica dos esforços ambientais. Como o dispositivo é normalmente configurado para operar próximo às condições de ressonância, os dispositivos de energia das ondas exibem grandes deslocamentos e as forças não lineares aumentam a sua contribuição na dinâmica do sistema. Com base nisto, a análise de conversores de energia das ondas é geralmente realizada usando modelos no domínio do tempo para incluir os efeitos não lineares. No entanto, o custo computacional associado a essas simulações é alto quando comparado aos modelos tradicionais no domínio da frequência. Além disso, várias condições de carregamento são necessárias para avaliar a resposta do corpo devido às características estocásticas das ondas do oceano, tornando-se indesejável a realização de simulações no domínio do tempo. A seguinte tese enfoca na análise estocástica de conversores de energia das ondas no domínio da frequência utilizando a linearização estatística para avaliar os efeitos das forças não lineares. A técnica empregada neste trabalho oferece uma estimativa rápida e confiável da dinâmica do dispositivo. Dois conversores de energia das ondas conceitualmente diferentes são investigados: um absorvedor pontual, e uma coluna de água oscilante. Os resultados obtidos usando a linearização estatística são comparados com os seus equivalentes modelos no domínio do tempo para verificar a confiabilidade da técnica. Uma boa concordância foi obtida entre as simulações de linearização estatística e de domínio de tempo em termos de distribuição da resposta, densidade espectral, valores médios e potência média absorvida. No entanto, o custo computacional associado às simulações no domínio do tempo foi notavelmente superior à da linearização estatística como esperado. Portanto, a técnica aplicada nesta tese oferece uma abordagem valiosa para ser usada como uma ferramenta de projeto para dispositivos de energia das ondas e procedimentos de otimização para desenvolver o setor de energia das ondas.Biblioteca Digitais de Teses e Dissertações da USPMorishita, Helio MitioSilva, Leandro Souza Pinheiro da2019-09-17info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://www.teses.usp.br/teses/disponiveis/3/3135/tde-08012020-161016/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesseng2020-01-10T15:02:02Zoai:teses.usp.br:tde-08012020-161016Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212020-01-10T15:02:02Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false |
dc.title.none.fl_str_mv |
Nonlinear stochastic analysis of wave energy converters via statistical linearization. Análise estocástica não-linear de conversores de energia das ondas através da linearização estatística. |
title |
Nonlinear stochastic analysis of wave energy converters via statistical linearization. |
spellingShingle |
Nonlinear stochastic analysis of wave energy converters via statistical linearization. Silva, Leandro Souza Pinheiro da Análise estocástica Dinâmica não linear Domínio da frequência Energia Energia das ondas Fontes alternativas de energia Fontes renováveis de energia Frequency domain Linearização estatística Nonlinear dynamics Ondas Statistical linearization Stochastic analysis Wave energy |
title_short |
Nonlinear stochastic analysis of wave energy converters via statistical linearization. |
title_full |
Nonlinear stochastic analysis of wave energy converters via statistical linearization. |
title_fullStr |
Nonlinear stochastic analysis of wave energy converters via statistical linearization. |
title_full_unstemmed |
Nonlinear stochastic analysis of wave energy converters via statistical linearization. |
title_sort |
Nonlinear stochastic analysis of wave energy converters via statistical linearization. |
author |
Silva, Leandro Souza Pinheiro da |
author_facet |
Silva, Leandro Souza Pinheiro da |
author_role |
author |
dc.contributor.none.fl_str_mv |
Morishita, Helio Mitio |
dc.contributor.author.fl_str_mv |
Silva, Leandro Souza Pinheiro da |
dc.subject.por.fl_str_mv |
Análise estocástica Dinâmica não linear Domínio da frequência Energia Energia das ondas Fontes alternativas de energia Fontes renováveis de energia Frequency domain Linearização estatística Nonlinear dynamics Ondas Statistical linearization Stochastic analysis Wave energy |
topic |
Análise estocástica Dinâmica não linear Domínio da frequência Energia Energia das ondas Fontes alternativas de energia Fontes renováveis de energia Frequency domain Linearização estatística Nonlinear dynamics Ondas Statistical linearization Stochastic analysis Wave energy |
description |
Renewable sources of energy play a fundamental role to attend the constant rising in the global energy demand. The main objectives of utilizing renewable energies are to reduce the negative aspects associated with the utilization of fossil fuels and to diversify the energy mix. Among the renewable sources, ocean wave energy remains insufficiently explored and have the capacity to contribute to energy production. The use of wave energy has been promoted due to the vast and dense amount of energy and regularity in power distribution. The idea of harvesting wave energy exists for at least two centuries. However, it mostly started after the oil crisis of the 1970s. Since then, several wave energy converters were created without a predominant design, and more concepts are expected to be created. The challenges in the designing of wave energy converts rely on the dynamics of such systems and the stochastic nature of the environmental loads. As the device is usually set to operate near resonant conditions, wave energy devices exhibit large displacements, and nonlinear forces rise in the dynamics of the system. In this regard, the analysis of wave energy converters is usually conducted using time domain models to include the nonlinear effects. However, the computational cost associated with these simulations is high compared to traditional frequency domain models. In addition, several load conditions are necessary to evaluate the body response due to the stochastic characteristics of ocean waves, becoming undesirable to conduct time domain simulations. This thesis focuses on the stochastic analysis of wave energy converters in the frequency domain using the statistical linearization to evaluate the effects of nonlinear forces. The technique employed in this work offers a fast and reliable estimation of the device dynamics. Two conceptually different wave energy converters are investigated: a point absorber, and an oscillating water column. The results obtained using the statistical linearization are compared with their equivalent time domain models to verify the reliability of the technique. The results obtained show a good agreement was obtained between the statistical linearization and time domain simulations in terms of response distribution, power spectrum density, mean offsets, and mean power absorbed. However, the computational cost associated with time domain simulations was remarkably superior to the statistical linearization as expected. Therefore, the technique applied in this thesis offers a valuable approach to be used as a design tool for wave energy devices, and optimization procedures to develop the wave energy sector. |
publishDate |
2019 |
dc.date.none.fl_str_mv |
2019-09-17 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://www.teses.usp.br/teses/disponiveis/3/3135/tde-08012020-161016/ |
url |
http://www.teses.usp.br/teses/disponiveis/3/3135/tde-08012020-161016/ |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
|
dc.rights.driver.fl_str_mv |
Liberar o conteúdo para acesso público. info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Liberar o conteúdo para acesso público. |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.coverage.none.fl_str_mv |
|
dc.publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações da USP instname:Universidade de São Paulo (USP) instacron:USP |
instname_str |
Universidade de São Paulo (USP) |
instacron_str |
USP |
institution |
USP |
reponame_str |
Biblioteca Digital de Teses e Dissertações da USP |
collection |
Biblioteca Digital de Teses e Dissertações da USP |
repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP) |
repository.mail.fl_str_mv |
virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br |
_version_ |
1815256790393159680 |