Numerical design of all-dielectric nanophotonic optical tweezers for lossless manipulation of small nanoparticles
Autor(a) principal: | |
---|---|
Data de Publicação: | 2022 |
Tipo de documento: | Tese |
Idioma: | eng |
Título da fonte: | Biblioteca Digital de Teses e Dissertações da USP |
Texto Completo: | https://www.teses.usp.br/teses/disponiveis/76/76134/tde-14022023-094704/ |
Resumo: | Conventional optical tweezers are useful in biosciences to manipulate micron-sized objects, DNA molecules, low-dimensional semiconductor structures and metallic nanoparticles using propagating laser beams. However, the effective optical trapping of nanometer-sized biomolecules requires high-power, tightly focused laser beams, which may be unavailable or photodamage temperature-sensitive particles. In order to avoid high power intensities and overcome the diffraction limit of light, plasmonic tweezers are employed to localize, hold and transport bodies of a few nanometers. In this approach, optical fields are confined beyond the diffraction limit in small volumes, with typical sizes of a few tens of nanometers (hotspots) that arise near the surface of a metallic nanostructure when surface plasmons are excited. The strong evanescent near-fields enhance the resulting optical force in the subwavelength regime. Unfortunately, electromagnetic heating due to the Ohmic losses of plasmonic components considerably limits the range of application of plasmonic tweezers, and the stable optical trapping of temperature-sensitive nanometer-scale objects still remains as a challenge. To overcome the Joule heating, sophisticated nanostructures made of high-refractive-index (HRI) materials with electromagnetic field enhancements and confinements have been proposed for optical trapping of nanoscale biological entities. In this PhD thesis, a design is presented of an all-dielectric nanodisk to capture small dielectric achiral and chiral biological molecules without heating its surrounding environment. Using a HRI nanodisk, placed above SiO2 semi-infinite substrate and immersed in water, efficient optical trapping of spherical nanoparticles with radius as small as 12 nm has been achieved. Such stable optical trapping, with the depth of the trapping potential much higher than 10kBT in modulus, has been obtained using the second-order non-radiating anapole mode in an amorphous-Si nanodisk with diameter d = 420 nm and height h = 100 nm, having a rectangular slot at the center. Nanobeads with radius as small as r = 8 nm at the center of the slot experience optical forces of a few pNs, with trapping forces strong enough to move them. These results were reached with a tightly focused laser beam at the infrared and moderate illumination intensities, without producing undesired temperature increases inside nor around the nanostructure. We also demonstrated that all-dielectric nanodisks made of amorphous silicon (a-Si) can exhibit double-well optical potentials. Hence, the simultaneous optical trapping of two nanoparticles in water was numerically investigated to determine the influence that a trapped spherical nanoparticle has on another nearby particle but with a different morphology. This approach may be useful to monitor experimentally the interaction between a pair of biological molecules, such as two proteins or a protein with an antibody, under isolated and controlled conditions. Furthermore, to distinguish enantiomers in a racemic sample a chiral all-dielectric platform with a non-negligible chiroptical activity has been introduced. In this platform, two optical forces, namely, the dielectric and chiral gradient forces, compete to guarantee enantioselectivity in the Rayleigh regime. All the optical properties presented in the thesis were determined utilizing the commercial software COMSOL Multiphysics and Lumerical FDTD. The heat transfer and computational fluid dynamics (CFD) modules were used in a coupled manner in Comsol multiphysics to study numerically the temperature distribution and the thermal-induced fluid motion when the dielectric nanostructures are illuminated with short wavelengths. |
id |
USP_4b43b7e4779f35d36ef59086e1a377ad |
---|---|
oai_identifier_str |
oai:teses.usp.br:tde-14022023-094704 |
network_acronym_str |
USP |
network_name_str |
Biblioteca Digital de Teses e Dissertações da USP |
repository_id_str |
2721 |
spelling |
Numerical design of all-dielectric nanophotonic optical tweezers for lossless manipulation of small nanoparticlesProjeto numérico de pinças ópticas nanofotônicas totalmente dielétricas para manipulação sem perdas de pequenas nanopartículasAprisionamento óptico estávelAquecimento JouleConventional optical tweezersForças ópticas e enantiosseletividadeJoule heatingOptical forces and enantioselectivityPinças ópticas convencionaisPinças plasmônicasPlasmonic tweezersStable optical trappingConventional optical tweezers are useful in biosciences to manipulate micron-sized objects, DNA molecules, low-dimensional semiconductor structures and metallic nanoparticles using propagating laser beams. However, the effective optical trapping of nanometer-sized biomolecules requires high-power, tightly focused laser beams, which may be unavailable or photodamage temperature-sensitive particles. In order to avoid high power intensities and overcome the diffraction limit of light, plasmonic tweezers are employed to localize, hold and transport bodies of a few nanometers. In this approach, optical fields are confined beyond the diffraction limit in small volumes, with typical sizes of a few tens of nanometers (hotspots) that arise near the surface of a metallic nanostructure when surface plasmons are excited. The strong evanescent near-fields enhance the resulting optical force in the subwavelength regime. Unfortunately, electromagnetic heating due to the Ohmic losses of plasmonic components considerably limits the range of application of plasmonic tweezers, and the stable optical trapping of temperature-sensitive nanometer-scale objects still remains as a challenge. To overcome the Joule heating, sophisticated nanostructures made of high-refractive-index (HRI) materials with electromagnetic field enhancements and confinements have been proposed for optical trapping of nanoscale biological entities. In this PhD thesis, a design is presented of an all-dielectric nanodisk to capture small dielectric achiral and chiral biological molecules without heating its surrounding environment. Using a HRI nanodisk, placed above SiO2 semi-infinite substrate and immersed in water, efficient optical trapping of spherical nanoparticles with radius as small as 12 nm has been achieved. Such stable optical trapping, with the depth of the trapping potential much higher than 10kBT in modulus, has been obtained using the second-order non-radiating anapole mode in an amorphous-Si nanodisk with diameter d = 420 nm and height h = 100 nm, having a rectangular slot at the center. Nanobeads with radius as small as r = 8 nm at the center of the slot experience optical forces of a few pNs, with trapping forces strong enough to move them. These results were reached with a tightly focused laser beam at the infrared and moderate illumination intensities, without producing undesired temperature increases inside nor around the nanostructure. We also demonstrated that all-dielectric nanodisks made of amorphous silicon (a-Si) can exhibit double-well optical potentials. Hence, the simultaneous optical trapping of two nanoparticles in water was numerically investigated to determine the influence that a trapped spherical nanoparticle has on another nearby particle but with a different morphology. This approach may be useful to monitor experimentally the interaction between a pair of biological molecules, such as two proteins or a protein with an antibody, under isolated and controlled conditions. Furthermore, to distinguish enantiomers in a racemic sample a chiral all-dielectric platform with a non-negligible chiroptical activity has been introduced. In this platform, two optical forces, namely, the dielectric and chiral gradient forces, compete to guarantee enantioselectivity in the Rayleigh regime. All the optical properties presented in the thesis were determined utilizing the commercial software COMSOL Multiphysics and Lumerical FDTD. The heat transfer and computational fluid dynamics (CFD) modules were used in a coupled manner in Comsol multiphysics to study numerically the temperature distribution and the thermal-induced fluid motion when the dielectric nanostructures are illuminated with short wavelengths.Pinças ópticas convencionais são úteis em biociências para manipular micropartículas, moléculas de DNA, estruturas semicondutoras de baixa dimensão e nanopartículas metálicas usando a propagação de feixes de laser. No entanto, o aprisionamento óptico eficaz de pequenas biomoléculas de alguns nanômetros requer feixes de laser de alta potência e altamente focados, que podem danificar ou queimar partículas sensíveis à temperatura. A fim de evitar altas intensidades de potência e ultrapassar o limite de difração da luz, pinças plasmônicas são empregadas para localizar, segurar e transportar corpos de alguns nanômetros. Nessa abordagem, os campos ópticos são confinados além do limite de difração em pequenos volumes, com tamanhos típicos de algumas dezenas de nanômetros (hotspots), que surgem próximos à superfície de uma nanoestrutura metálica quando os plásmons de superfície são excitados. Além disso, os fortes campos próximos evanescentes aumentam a força óptica resultante no regime de Rayleigh. Infelizmente, o aquecimento eletromagnético devido às perdas ôhmicas dos componentes plasmônicos limita consideravelmente a faixa de aplicação das pinças plasmônicas, e o aprisionamento óptico estável de nano moléculas sensíveis à temperatura permanece como um desafio. Para superar o aquecimento Joule, nanoestruturas sofisticadas feitas de materiais de alto índice de refração (HRI) com melhoras e confinamentos de campo eletromagnético foram propostas para aprisionamento óptico de entidades nano biológicas. Nesta tese de doutorado, é apresentado um projeto de um nanodisco totalmente dielétrico para capturar pequenas moléculas biológicas aquirais e quirais dielétricas sem aquecer o ambiente circundante. Usando um nanodisco HRI, colocado acima do substrato semi-infinito de SiO2 e imerso em água, foi alcançado um aprisionamento óptico eficiente de nanopartículas esféricas com raio tão pequeno quanto 12 nm. Tal aprisionamento óptico estável, onde a profundidade do poço de potencial de aprisionamento é superior a 10kBT em módulo, foi obtido usando o modo anapolo não radiante de segunda ordem em um nanodisco de Si amorfo com diâmetro d = 420 nm e altura h = 100nm, com uma ranhura retangular no centro. Nanoesferas com raio tão pequeno quanto r = 8 no centro da ranhura são submetidas a forças ópticas de alguns pNs, com aprisionamento forte o suficiente para movê-las. Esses resultados foram alcançados com um feixe de laser bem focado no infravermelho e com intensidades moderadas de iluminação, sem produzir aumentos indesejados de temperatura dentro e ao redor da nanoestrutura. Também demonstramos que nanodiscos totalmente dielétricos feitos de silício amorfo (a-Si) podem exibir dois poços de potenciais ópticos bem perto entre si. Assim, o aprisionamento óptico simultâneo de duas nanopartículas em água foi investigado numericamente para determinar a influência que tem uma nanopartícula esférica aprisionada sobre uma outra partícula próxima, que tem morfologia diferente. Esta abordagem pode ser útil para monitorar experimentalmente a interação entre um par de moléculas biológicas, como duas proteínas ou uma proteína com um anticorpo, sob condições isoladas e controladas. Além disso, para distinguir enantiômeros em uma amostra racêmica, foi introduzida uma plataforma totalmente dielétrica quiral com atividade quiróptica não desprezível. Nesta plataforma, duas forças ópticas, as forças dielétrica e gradiente quiral, competem para garantir a enantiosseletividade no regime de Rayleigh. Todas as propriedades ópticas apresentadas na tese foram determinadas utilizando o software comercial COMSOL Multiphysics e Lumerical FDTD. Os módulos de transferência de calor e dinâmica de fluidos computacional (CFD) foram usados de forma acoplada no Comsol Multiphysics para estudar numericamente a distribuição de temperatura e o movimento do fluido induzido quando as nanoestruturas dielétricas são iluminadas com comprimentos de onda curtos.Biblioteca Digitais de Teses e Dissertações da USPOliveira Junior, Osvaldo Novais deSalazar, Jorge Ricardo MejiaSarria, Jhon James Hernandez2022-12-07info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfhttps://www.teses.usp.br/teses/disponiveis/76/76134/tde-14022023-094704/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesseng2024-08-22T23:45:03Zoai:teses.usp.br:tde-14022023-094704Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212024-08-22T23:45:03Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false |
dc.title.none.fl_str_mv |
Numerical design of all-dielectric nanophotonic optical tweezers for lossless manipulation of small nanoparticles Projeto numérico de pinças ópticas nanofotônicas totalmente dielétricas para manipulação sem perdas de pequenas nanopartículas |
title |
Numerical design of all-dielectric nanophotonic optical tweezers for lossless manipulation of small nanoparticles |
spellingShingle |
Numerical design of all-dielectric nanophotonic optical tweezers for lossless manipulation of small nanoparticles Sarria, Jhon James Hernandez Aprisionamento óptico estável Aquecimento Joule Conventional optical tweezers Forças ópticas e enantiosseletividade Joule heating Optical forces and enantioselectivity Pinças ópticas convencionais Pinças plasmônicas Plasmonic tweezers Stable optical trapping |
title_short |
Numerical design of all-dielectric nanophotonic optical tweezers for lossless manipulation of small nanoparticles |
title_full |
Numerical design of all-dielectric nanophotonic optical tweezers for lossless manipulation of small nanoparticles |
title_fullStr |
Numerical design of all-dielectric nanophotonic optical tweezers for lossless manipulation of small nanoparticles |
title_full_unstemmed |
Numerical design of all-dielectric nanophotonic optical tweezers for lossless manipulation of small nanoparticles |
title_sort |
Numerical design of all-dielectric nanophotonic optical tweezers for lossless manipulation of small nanoparticles |
author |
Sarria, Jhon James Hernandez |
author_facet |
Sarria, Jhon James Hernandez |
author_role |
author |
dc.contributor.none.fl_str_mv |
Oliveira Junior, Osvaldo Novais de Salazar, Jorge Ricardo Mejia |
dc.contributor.author.fl_str_mv |
Sarria, Jhon James Hernandez |
dc.subject.por.fl_str_mv |
Aprisionamento óptico estável Aquecimento Joule Conventional optical tweezers Forças ópticas e enantiosseletividade Joule heating Optical forces and enantioselectivity Pinças ópticas convencionais Pinças plasmônicas Plasmonic tweezers Stable optical trapping |
topic |
Aprisionamento óptico estável Aquecimento Joule Conventional optical tweezers Forças ópticas e enantiosseletividade Joule heating Optical forces and enantioselectivity Pinças ópticas convencionais Pinças plasmônicas Plasmonic tweezers Stable optical trapping |
description |
Conventional optical tweezers are useful in biosciences to manipulate micron-sized objects, DNA molecules, low-dimensional semiconductor structures and metallic nanoparticles using propagating laser beams. However, the effective optical trapping of nanometer-sized biomolecules requires high-power, tightly focused laser beams, which may be unavailable or photodamage temperature-sensitive particles. In order to avoid high power intensities and overcome the diffraction limit of light, plasmonic tweezers are employed to localize, hold and transport bodies of a few nanometers. In this approach, optical fields are confined beyond the diffraction limit in small volumes, with typical sizes of a few tens of nanometers (hotspots) that arise near the surface of a metallic nanostructure when surface plasmons are excited. The strong evanescent near-fields enhance the resulting optical force in the subwavelength regime. Unfortunately, electromagnetic heating due to the Ohmic losses of plasmonic components considerably limits the range of application of plasmonic tweezers, and the stable optical trapping of temperature-sensitive nanometer-scale objects still remains as a challenge. To overcome the Joule heating, sophisticated nanostructures made of high-refractive-index (HRI) materials with electromagnetic field enhancements and confinements have been proposed for optical trapping of nanoscale biological entities. In this PhD thesis, a design is presented of an all-dielectric nanodisk to capture small dielectric achiral and chiral biological molecules without heating its surrounding environment. Using a HRI nanodisk, placed above SiO2 semi-infinite substrate and immersed in water, efficient optical trapping of spherical nanoparticles with radius as small as 12 nm has been achieved. Such stable optical trapping, with the depth of the trapping potential much higher than 10kBT in modulus, has been obtained using the second-order non-radiating anapole mode in an amorphous-Si nanodisk with diameter d = 420 nm and height h = 100 nm, having a rectangular slot at the center. Nanobeads with radius as small as r = 8 nm at the center of the slot experience optical forces of a few pNs, with trapping forces strong enough to move them. These results were reached with a tightly focused laser beam at the infrared and moderate illumination intensities, without producing undesired temperature increases inside nor around the nanostructure. We also demonstrated that all-dielectric nanodisks made of amorphous silicon (a-Si) can exhibit double-well optical potentials. Hence, the simultaneous optical trapping of two nanoparticles in water was numerically investigated to determine the influence that a trapped spherical nanoparticle has on another nearby particle but with a different morphology. This approach may be useful to monitor experimentally the interaction between a pair of biological molecules, such as two proteins or a protein with an antibody, under isolated and controlled conditions. Furthermore, to distinguish enantiomers in a racemic sample a chiral all-dielectric platform with a non-negligible chiroptical activity has been introduced. In this platform, two optical forces, namely, the dielectric and chiral gradient forces, compete to guarantee enantioselectivity in the Rayleigh regime. All the optical properties presented in the thesis were determined utilizing the commercial software COMSOL Multiphysics and Lumerical FDTD. The heat transfer and computational fluid dynamics (CFD) modules were used in a coupled manner in Comsol multiphysics to study numerically the temperature distribution and the thermal-induced fluid motion when the dielectric nanostructures are illuminated with short wavelengths. |
publishDate |
2022 |
dc.date.none.fl_str_mv |
2022-12-07 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
format |
doctoralThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://www.teses.usp.br/teses/disponiveis/76/76134/tde-14022023-094704/ |
url |
https://www.teses.usp.br/teses/disponiveis/76/76134/tde-14022023-094704/ |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
|
dc.rights.driver.fl_str_mv |
Liberar o conteúdo para acesso público. info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Liberar o conteúdo para acesso público. |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.coverage.none.fl_str_mv |
|
dc.publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações da USP instname:Universidade de São Paulo (USP) instacron:USP |
instname_str |
Universidade de São Paulo (USP) |
instacron_str |
USP |
institution |
USP |
reponame_str |
Biblioteca Digital de Teses e Dissertações da USP |
collection |
Biblioteca Digital de Teses e Dissertações da USP |
repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP) |
repository.mail.fl_str_mv |
virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br |
_version_ |
1815256957477453824 |