Modelo de classificação multivariável para identificação de enchentes: um estudo empírico no sistema de monitoramento de rios e-noe

Detalhes bibliográficos
Autor(a) principal: Brito, Lucas Augusto Vieira
Data de Publicação: 2019
Tipo de documento: Dissertação
Idioma: por
Título da fonte: Biblioteca Digital de Teses e Dissertações da USP
Texto Completo: http://www.teses.usp.br/teses/disponiveis/55/55134/tde-22082019-102714/
Resumo: Nas últimas décadas, as enchentes vêm causando muitos problemas nas cidades, principalmente em grandes centros urbanos devido à alteração da paisagem natural e à impermeabilização do terreno. Geralmente esses eventos estão relacionados a eventos extremos de chuva, junto a um insuficiente sistema de drenagem para dar vazão ao escoamento gerado. Um ponto agravante - que colabora com o aumento da magnitude das enchentes - é o crescimento populacional desordenado. Assim, faltam políticas públicas, como um estudo prévio da região para alocação de pessoas de maneira eficiente. Na literatura, existem algumas soluções, como o uso da tecnologia de Redes de Sensores Sem Fio (RSSF), que podem ser implantadas no cenário urbano como forma de monitoramento de enchentes. Nesse cenário, um dos principais desafios para elaboração desses sistemas é emitir alertas para que desastres maiores sejam evitados. Porém, a utilização de uma única fonte de dados, unida a possíveis falhas que as RSSFs podem sofrer, acaba comprometendo o monitoramento e o alerta de enchentes. Uma outra abordagem é a utilização de modelos hidrológicos criados a partir de um estudos prévios do solo e da estrutura da bacia, pois eles são capazes de reproduzir o comportamento do escoamento da bacia a partir de séries temporais como entrada. Existem muitos modelos hidrológicos com diversas estruturas de dados e detalhamento da bacia hidrográfica, dos mais complexos - capazes de reproduzir a física dos processos de infiltração e o escoamento de água - até os mais simplificados, que utilizam parâmetros de ajustes que não são necessariamente relacionados aos fenômenos físicos envolvidos nesses processos. Porém, muitos desses modelos precisam de uma grande quantidade de dados para o seu desenvolvimento, tornando-os muito complexos e custosos. Dessa forma, esta dissertação de mestrado apresenta um modelo de identificação de enchentes baseado na mineração de dados e aprendizado de máquina, com o intuito de diminuir a complexidade e o custo dos modelos hidrológicos e a dependabilidade de uma única variável de sistemas de RSSF, além da vantagem de ser facilmente generalizável sem perder a eficiência na identificação de enchente. As variáveis utilizadas para o desenvolvimento do modelo são os dados de estações meteorológicas e o nível de água do canal. Assim, é utilizada a metodologia do Cross Industry Standard Process for Data Mining (CRISP-DM) para a mineração dos dados, por ser uma técnica objetiva que contém as melhores práticas para a exploração dos dados. Os resultados revelam que o modelo desenvolvido obteve uma acurácia de aproximadamente 87:8%, com o algoritmo Random_Forest. Além disso, nos testes de adaptabilidade e comparação com o Storm Water Management Model (SWMM)-um modelo hidrológico amplamente conhecido na literatura-, em uma mesma região de estudo, o modelo desenvolvido obteve resultados relevantes no contexto de identificação de enchente. Isso mostra que o modelo desenvolvido possui grande potencial de aplicação, principalmente por sua simplicidade de implementação e replicação sem comprometer a qualidade de identificação da ocorrência de enchentes. Consequentemente, algumas das principais contribuições deste trabalho são: (i) o modelo multivariável de identificação de enchente diminui a complexidade, custos e tempo de desenvolvimento em relação aos modelos hidrológicos e; (ii) o avanço do estado da arte em comparação aos trabalhos computacionais, por não depender de variáveis fixas e utilizar multivariáveis para identificar o padrão de enchentes.
id USP_4b48c7e490ebce0663af22b38f6db12d
oai_identifier_str oai:teses.usp.br:tde-22082019-102714
network_acronym_str USP
network_name_str Biblioteca Digital de Teses e Dissertações da USP
repository_id_str 2721
spelling Modelo de classificação multivariável para identificação de enchentes: um estudo empírico no sistema de monitoramento de rios e-noeMultivariate classification model for identification of floods: an empirical study in the monitoring of e-noe riversAprendizado de máquinaCRISP-DMCRISP-DMData miningFlood identificationIdentificação de enchentesMachine learningMineração de dadosRSSFWSNNas últimas décadas, as enchentes vêm causando muitos problemas nas cidades, principalmente em grandes centros urbanos devido à alteração da paisagem natural e à impermeabilização do terreno. Geralmente esses eventos estão relacionados a eventos extremos de chuva, junto a um insuficiente sistema de drenagem para dar vazão ao escoamento gerado. Um ponto agravante - que colabora com o aumento da magnitude das enchentes - é o crescimento populacional desordenado. Assim, faltam políticas públicas, como um estudo prévio da região para alocação de pessoas de maneira eficiente. Na literatura, existem algumas soluções, como o uso da tecnologia de Redes de Sensores Sem Fio (RSSF), que podem ser implantadas no cenário urbano como forma de monitoramento de enchentes. Nesse cenário, um dos principais desafios para elaboração desses sistemas é emitir alertas para que desastres maiores sejam evitados. Porém, a utilização de uma única fonte de dados, unida a possíveis falhas que as RSSFs podem sofrer, acaba comprometendo o monitoramento e o alerta de enchentes. Uma outra abordagem é a utilização de modelos hidrológicos criados a partir de um estudos prévios do solo e da estrutura da bacia, pois eles são capazes de reproduzir o comportamento do escoamento da bacia a partir de séries temporais como entrada. Existem muitos modelos hidrológicos com diversas estruturas de dados e detalhamento da bacia hidrográfica, dos mais complexos - capazes de reproduzir a física dos processos de infiltração e o escoamento de água - até os mais simplificados, que utilizam parâmetros de ajustes que não são necessariamente relacionados aos fenômenos físicos envolvidos nesses processos. Porém, muitos desses modelos precisam de uma grande quantidade de dados para o seu desenvolvimento, tornando-os muito complexos e custosos. Dessa forma, esta dissertação de mestrado apresenta um modelo de identificação de enchentes baseado na mineração de dados e aprendizado de máquina, com o intuito de diminuir a complexidade e o custo dos modelos hidrológicos e a dependabilidade de uma única variável de sistemas de RSSF, além da vantagem de ser facilmente generalizável sem perder a eficiência na identificação de enchente. As variáveis utilizadas para o desenvolvimento do modelo são os dados de estações meteorológicas e o nível de água do canal. Assim, é utilizada a metodologia do Cross Industry Standard Process for Data Mining (CRISP-DM) para a mineração dos dados, por ser uma técnica objetiva que contém as melhores práticas para a exploração dos dados. Os resultados revelam que o modelo desenvolvido obteve uma acurácia de aproximadamente 87:8%, com o algoritmo Random_Forest. Além disso, nos testes de adaptabilidade e comparação com o Storm Water Management Model (SWMM)-um modelo hidrológico amplamente conhecido na literatura-, em uma mesma região de estudo, o modelo desenvolvido obteve resultados relevantes no contexto de identificação de enchente. Isso mostra que o modelo desenvolvido possui grande potencial de aplicação, principalmente por sua simplicidade de implementação e replicação sem comprometer a qualidade de identificação da ocorrência de enchentes. Consequentemente, algumas das principais contribuições deste trabalho são: (i) o modelo multivariável de identificação de enchente diminui a complexidade, custos e tempo de desenvolvimento em relação aos modelos hidrológicos e; (ii) o avanço do estado da arte em comparação aos trabalhos computacionais, por não depender de variáveis fixas e utilizar multivariáveis para identificar o padrão de enchentes.In recent decades, floods have caused many problems in cities, especially in large urban centers due to the alteration of the natural landscape and the waterproofing of the terrain. Generally, these events are related to extreme rainfall events, together with an insufficient drainage system to give flow to the flow generated. An aggravating point - which contributes to the increase in flood magnitude - is disordered population growth. Thus, public policies are lacking, such as a prior study of the region for the efficient allocation of people. In the literature, there are some solutions, such as the use of the Wireless Sensor Networks (WSN) technology, which can be implemented in the urban scene as a form of flood monitoring. In this scenario, one of the major challenges in designing these systems is to issue alerts so that major disasters are avoided. However, the use of a single data source, coupled with the possible flaws that WSNs may suffer, endangers flood monitoring and alertness. Another approach is the use of hydrological models created from previous soil studies and basin structure, as they are able to reproduce basin flow behavior from time series as input. There are many hydrological models with diverse data structures and details of the hydrographic basin, of the most complex - capable of reproducing the physics of the infiltration processes and the water flow - to the more simplified, that use parameters of adjustments that are not necessarily related to the phenomena involved in these processes. However, many of these models need a lot of data for their development, making them very complex and costly. This dissertation presents a flood identification model based on data mining and machine learning in order to reduce the complexity and cost of hydrological models and the dependability of a single variable of WSN systems. of the advantage of being easily generalizable without losing efficiency in the identification of flood. The variables used for the development of the model are the data of meteorological stations and the water level of the channel. Thus, the Cross Industry Standard Process for Data Mining (CRISP-DM) methodology for data mining is used, since it is an objective technique that contains the best practices for data mining. The results show that the developed model obtained an accuracy of approximately 87.8%, with the algorithm Random_Forest. In addition, in the adaptive and comparative tests with the Storm Water Management Model (SWMM), a hydrological model widely known in the literature, in the same region of study, the developed model obtained relevant results in the context of flood identification. This shows that the developed model has great application potential, mainly for its simplicity of implementation and replication without compromising the quality of the identification of the occurrence of floods. Consequently, some of the main contributions of this work are: (i) the multivariate model of flood identification decreases the complexity, costs and development time in relation to the hydrological models; (ii) the advance of the state of the art in comparison to the computational works, because it does not depend on fixed variables and use multivariable to identify the flood pattern.Biblioteca Digitais de Teses e Dissertações da USPUeyama, JoBrito, Lucas Augusto Vieira2019-05-17info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://www.teses.usp.br/teses/disponiveis/55/55134/tde-22082019-102714/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesspor2019-08-22T21:25:22Zoai:teses.usp.br:tde-22082019-102714Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212019-08-22T21:25:22Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false
dc.title.none.fl_str_mv Modelo de classificação multivariável para identificação de enchentes: um estudo empírico no sistema de monitoramento de rios e-noe
Multivariate classification model for identification of floods: an empirical study in the monitoring of e-noe rivers
title Modelo de classificação multivariável para identificação de enchentes: um estudo empírico no sistema de monitoramento de rios e-noe
spellingShingle Modelo de classificação multivariável para identificação de enchentes: um estudo empírico no sistema de monitoramento de rios e-noe
Brito, Lucas Augusto Vieira
Aprendizado de máquina
CRISP-DM
CRISP-DM
Data mining
Flood identification
Identificação de enchentes
Machine learning
Mineração de dados
RSSF
WSN
title_short Modelo de classificação multivariável para identificação de enchentes: um estudo empírico no sistema de monitoramento de rios e-noe
title_full Modelo de classificação multivariável para identificação de enchentes: um estudo empírico no sistema de monitoramento de rios e-noe
title_fullStr Modelo de classificação multivariável para identificação de enchentes: um estudo empírico no sistema de monitoramento de rios e-noe
title_full_unstemmed Modelo de classificação multivariável para identificação de enchentes: um estudo empírico no sistema de monitoramento de rios e-noe
title_sort Modelo de classificação multivariável para identificação de enchentes: um estudo empírico no sistema de monitoramento de rios e-noe
author Brito, Lucas Augusto Vieira
author_facet Brito, Lucas Augusto Vieira
author_role author
dc.contributor.none.fl_str_mv Ueyama, Jo
dc.contributor.author.fl_str_mv Brito, Lucas Augusto Vieira
dc.subject.por.fl_str_mv Aprendizado de máquina
CRISP-DM
CRISP-DM
Data mining
Flood identification
Identificação de enchentes
Machine learning
Mineração de dados
RSSF
WSN
topic Aprendizado de máquina
CRISP-DM
CRISP-DM
Data mining
Flood identification
Identificação de enchentes
Machine learning
Mineração de dados
RSSF
WSN
description Nas últimas décadas, as enchentes vêm causando muitos problemas nas cidades, principalmente em grandes centros urbanos devido à alteração da paisagem natural e à impermeabilização do terreno. Geralmente esses eventos estão relacionados a eventos extremos de chuva, junto a um insuficiente sistema de drenagem para dar vazão ao escoamento gerado. Um ponto agravante - que colabora com o aumento da magnitude das enchentes - é o crescimento populacional desordenado. Assim, faltam políticas públicas, como um estudo prévio da região para alocação de pessoas de maneira eficiente. Na literatura, existem algumas soluções, como o uso da tecnologia de Redes de Sensores Sem Fio (RSSF), que podem ser implantadas no cenário urbano como forma de monitoramento de enchentes. Nesse cenário, um dos principais desafios para elaboração desses sistemas é emitir alertas para que desastres maiores sejam evitados. Porém, a utilização de uma única fonte de dados, unida a possíveis falhas que as RSSFs podem sofrer, acaba comprometendo o monitoramento e o alerta de enchentes. Uma outra abordagem é a utilização de modelos hidrológicos criados a partir de um estudos prévios do solo e da estrutura da bacia, pois eles são capazes de reproduzir o comportamento do escoamento da bacia a partir de séries temporais como entrada. Existem muitos modelos hidrológicos com diversas estruturas de dados e detalhamento da bacia hidrográfica, dos mais complexos - capazes de reproduzir a física dos processos de infiltração e o escoamento de água - até os mais simplificados, que utilizam parâmetros de ajustes que não são necessariamente relacionados aos fenômenos físicos envolvidos nesses processos. Porém, muitos desses modelos precisam de uma grande quantidade de dados para o seu desenvolvimento, tornando-os muito complexos e custosos. Dessa forma, esta dissertação de mestrado apresenta um modelo de identificação de enchentes baseado na mineração de dados e aprendizado de máquina, com o intuito de diminuir a complexidade e o custo dos modelos hidrológicos e a dependabilidade de uma única variável de sistemas de RSSF, além da vantagem de ser facilmente generalizável sem perder a eficiência na identificação de enchente. As variáveis utilizadas para o desenvolvimento do modelo são os dados de estações meteorológicas e o nível de água do canal. Assim, é utilizada a metodologia do Cross Industry Standard Process for Data Mining (CRISP-DM) para a mineração dos dados, por ser uma técnica objetiva que contém as melhores práticas para a exploração dos dados. Os resultados revelam que o modelo desenvolvido obteve uma acurácia de aproximadamente 87:8%, com o algoritmo Random_Forest. Além disso, nos testes de adaptabilidade e comparação com o Storm Water Management Model (SWMM)-um modelo hidrológico amplamente conhecido na literatura-, em uma mesma região de estudo, o modelo desenvolvido obteve resultados relevantes no contexto de identificação de enchente. Isso mostra que o modelo desenvolvido possui grande potencial de aplicação, principalmente por sua simplicidade de implementação e replicação sem comprometer a qualidade de identificação da ocorrência de enchentes. Consequentemente, algumas das principais contribuições deste trabalho são: (i) o modelo multivariável de identificação de enchente diminui a complexidade, custos e tempo de desenvolvimento em relação aos modelos hidrológicos e; (ii) o avanço do estado da arte em comparação aos trabalhos computacionais, por não depender de variáveis fixas e utilizar multivariáveis para identificar o padrão de enchentes.
publishDate 2019
dc.date.none.fl_str_mv 2019-05-17
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://www.teses.usp.br/teses/disponiveis/55/55134/tde-22082019-102714/
url http://www.teses.usp.br/teses/disponiveis/55/55134/tde-22082019-102714/
dc.language.iso.fl_str_mv por
language por
dc.relation.none.fl_str_mv
dc.rights.driver.fl_str_mv Liberar o conteúdo para acesso público.
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Liberar o conteúdo para acesso público.
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.coverage.none.fl_str_mv
dc.publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
dc.source.none.fl_str_mv
reponame:Biblioteca Digital de Teses e Dissertações da USP
instname:Universidade de São Paulo (USP)
instacron:USP
instname_str Universidade de São Paulo (USP)
instacron_str USP
institution USP
reponame_str Biblioteca Digital de Teses e Dissertações da USP
collection Biblioteca Digital de Teses e Dissertações da USP
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)
repository.mail.fl_str_mv virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br
_version_ 1815257279317934080