Zeros Elementares de Álgebras de Lie de Campos de Vetores
Autor(a) principal: | |
---|---|
Data de Publicação: | 1996 |
Tipo de documento: | Dissertação |
Idioma: | por |
Título da fonte: | Biblioteca Digital de Teses e Dissertações da USP |
Texto Completo: | http://www.teses.usp.br/teses/disponiveis/55/55135/tde-12012018-144349/ |
Resumo: | Quando um grupo de Lie nilpotente age sem pontos fixos sobre uma superfície compacta M, a característica de Euler X(M) de M é zero [11]. Isso sugere a possibilidade de um teorema tipo Poincaré-Hopf para ações destes grupos em variedades compactas. J.F.Plante em seu artigo \"Elementary Zeros of Lie Algebras of Vector Fields\" , [12], obtém urna caracterização dos zeros elementares dessas álgebras em dois casos: quando g é nilpotente e quando g é semi-simples. Ele também mostra que para uma álgebra de Lie abeliana g de campos de vetores de uma superfície compacta, tal que todo zero de g é elementar, existe um subconjunto S ⊂ g tal que g — S tem medida nula e para todo X ∈ S valem: (a) O conjunto de zeros isolados de X coincide com o conjunto (finito) de zeros de g; (b) Se p1,..., pk são os zeros de g então ∑k1=1 índice (X, pi ) = x (M) . Baseado neste teorema e em um exemplo, ele mostra que não é possivel definir o índice de g em um zero isolado p como o índice de um zero de um elemento genérico X ∈ S em p. Embora ele não diga, o leitor fica com a impressão que um teorema do tipo Poincaré-Hopf, como mencionado no começo, não parece existir. Nesta dissertação faço uma exposição detalhada do artigo de J.F.Plante ilustrando com exemplos os teoremas do artigo. |
id |
USP_4d6681df99a966ec719d8b41c27c59b6 |
---|---|
oai_identifier_str |
oai:teses.usp.br:tde-12012018-144349 |
network_acronym_str |
USP |
network_name_str |
Biblioteca Digital de Teses e Dissertações da USP |
repository_id_str |
2721 |
spelling |
Zeros Elementares de Álgebras de Lie de Campos de VetoresNot availableNot availableNot availableQuando um grupo de Lie nilpotente age sem pontos fixos sobre uma superfície compacta M, a característica de Euler X(M) de M é zero [11]. Isso sugere a possibilidade de um teorema tipo Poincaré-Hopf para ações destes grupos em variedades compactas. J.F.Plante em seu artigo \"Elementary Zeros of Lie Algebras of Vector Fields\" , [12], obtém urna caracterização dos zeros elementares dessas álgebras em dois casos: quando g é nilpotente e quando g é semi-simples. Ele também mostra que para uma álgebra de Lie abeliana g de campos de vetores de uma superfície compacta, tal que todo zero de g é elementar, existe um subconjunto S ⊂ g tal que g — S tem medida nula e para todo X ∈ S valem: (a) O conjunto de zeros isolados de X coincide com o conjunto (finito) de zeros de g; (b) Se p1,..., pk são os zeros de g então ∑k1=1 índice (X, pi ) = x (M) . Baseado neste teorema e em um exemplo, ele mostra que não é possivel definir o índice de g em um zero isolado p como o índice de um zero de um elemento genérico X ∈ S em p. Embora ele não diga, o leitor fica com a impressão que um teorema do tipo Poincaré-Hopf, como mencionado no começo, não parece existir. Nesta dissertação faço uma exposição detalhada do artigo de J.F.Plante ilustrando com exemplos os teoremas do artigo.When a nilpotent Lie group acts without fixed points on a compact swface M, the Euler characteristic X(M) of (M) of M vanishes [11]. This suggests the possibility of a Poincaré-Hopf type theorem for actions of these groups on compact manifolds. J.F.Plante in his paper \" Elementary Zeros of Lie Algebras of Vector Field,s\" , [12] charactenze the elementary zeros of these algebras in two cases: when g is nilpotent and when g is semi-simple. He also shows that for a abelian Lie aþbra g of vector fields of a compact surface such that every zero of g is elementary, there exists a set S ⊂ g such that g — S has measure zero and for X ∈ S: (a) The set of isolated zeros of X coincides with the (finite) zero set of g; (b) If p1,...,pk are the zeros of g then ∑ki=1, index (X, pi) : X(M) . Based on this last theorem and one example, he shows that it is not possible to define the index of g at an isolated zeto p as the index of a generic element X ∈ S at p. Although he does not say it, the readers get the impression that a Poincaré-Hopf type theorem, as mentioned at the beginning, does not exist. Ln this dissertation I detail Plante\' paper illustrating it with several examples.Biblioteca Digitais de Teses e Dissertações da USPVergara, Jose Luis ArrautMartins Junior, Luiz Carlos1996-09-18info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://www.teses.usp.br/teses/disponiveis/55/55135/tde-12012018-144349/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesspor2018-07-19T20:50:39Zoai:teses.usp.br:tde-12012018-144349Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212018-07-19T20:50:39Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false |
dc.title.none.fl_str_mv |
Zeros Elementares de Álgebras de Lie de Campos de Vetores Not available |
title |
Zeros Elementares de Álgebras de Lie de Campos de Vetores |
spellingShingle |
Zeros Elementares de Álgebras de Lie de Campos de Vetores Martins Junior, Luiz Carlos Not available Not available |
title_short |
Zeros Elementares de Álgebras de Lie de Campos de Vetores |
title_full |
Zeros Elementares de Álgebras de Lie de Campos de Vetores |
title_fullStr |
Zeros Elementares de Álgebras de Lie de Campos de Vetores |
title_full_unstemmed |
Zeros Elementares de Álgebras de Lie de Campos de Vetores |
title_sort |
Zeros Elementares de Álgebras de Lie de Campos de Vetores |
author |
Martins Junior, Luiz Carlos |
author_facet |
Martins Junior, Luiz Carlos |
author_role |
author |
dc.contributor.none.fl_str_mv |
Vergara, Jose Luis Arraut |
dc.contributor.author.fl_str_mv |
Martins Junior, Luiz Carlos |
dc.subject.por.fl_str_mv |
Not available Not available |
topic |
Not available Not available |
description |
Quando um grupo de Lie nilpotente age sem pontos fixos sobre uma superfície compacta M, a característica de Euler X(M) de M é zero [11]. Isso sugere a possibilidade de um teorema tipo Poincaré-Hopf para ações destes grupos em variedades compactas. J.F.Plante em seu artigo \"Elementary Zeros of Lie Algebras of Vector Fields\" , [12], obtém urna caracterização dos zeros elementares dessas álgebras em dois casos: quando g é nilpotente e quando g é semi-simples. Ele também mostra que para uma álgebra de Lie abeliana g de campos de vetores de uma superfície compacta, tal que todo zero de g é elementar, existe um subconjunto S ⊂ g tal que g — S tem medida nula e para todo X ∈ S valem: (a) O conjunto de zeros isolados de X coincide com o conjunto (finito) de zeros de g; (b) Se p1,..., pk são os zeros de g então ∑k1=1 índice (X, pi ) = x (M) . Baseado neste teorema e em um exemplo, ele mostra que não é possivel definir o índice de g em um zero isolado p como o índice de um zero de um elemento genérico X ∈ S em p. Embora ele não diga, o leitor fica com a impressão que um teorema do tipo Poincaré-Hopf, como mencionado no começo, não parece existir. Nesta dissertação faço uma exposição detalhada do artigo de J.F.Plante ilustrando com exemplos os teoremas do artigo. |
publishDate |
1996 |
dc.date.none.fl_str_mv |
1996-09-18 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://www.teses.usp.br/teses/disponiveis/55/55135/tde-12012018-144349/ |
url |
http://www.teses.usp.br/teses/disponiveis/55/55135/tde-12012018-144349/ |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.relation.none.fl_str_mv |
|
dc.rights.driver.fl_str_mv |
Liberar o conteúdo para acesso público. info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Liberar o conteúdo para acesso público. |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.coverage.none.fl_str_mv |
|
dc.publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações da USP instname:Universidade de São Paulo (USP) instacron:USP |
instname_str |
Universidade de São Paulo (USP) |
instacron_str |
USP |
institution |
USP |
reponame_str |
Biblioteca Digital de Teses e Dissertações da USP |
collection |
Biblioteca Digital de Teses e Dissertações da USP |
repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP) |
repository.mail.fl_str_mv |
virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br |
_version_ |
1815256884986249216 |