Desenvolvimento de algoritmos genéticos para consultas por similaridade em domínios métricos

Detalhes bibliográficos
Autor(a) principal: Bueno, Renato
Data de Publicação: 2005
Tipo de documento: Dissertação
Idioma: por
Título da fonte: Biblioteca Digital de Teses e Dissertações da USP
Texto Completo: http://www.teses.usp.br/teses/disponiveis/55/55134/tde-21112014-172348/
Resumo: O custo do acesso exato a dados complexos tende a ser muito alto, do ponto de vista da carga de processamento computacional. Além disso, a operação de busca em dados multimídia não é efetuada realmente sobre os dados originais, mas sobre características extraídas desses dados, as quais os descrevem. Por exemplo, na busca por imagens similares utilizando-se histogramas de cor, realizando uma consulta exata, o que se obtém são as imagens cujos histogramas são exatamente os mais similares aos da imagem referenciada 11a consulta, mas isso não implica necessariamente que se obtenha as imagens que atendam exatamente a consulta efetuada, pois as imagens recuperadas podem ser muito diferentes quanto a forma, por exemplo. Portanto, em muitas aplicações que acessam dados complexos, a recuperação exata deixa de um requisito fundamental, podendo a exatidão das respostas ser trocada por um melhor desempenho Neste trabalho foram desenvolvidos algoritmos para recuperação aproximada do conjunto-resposta de consultas por similaridade em domínios métricos utilizando algoritmos genéticos. Neste trabalho, com a utilização de algoritmos genéticos, foram desenvolvidas técnicas de recuperação aproximada de dados cm domínio métrico, cujo refinamento das respostas obtidas é dependente do tempo de processamento disponível, definido pelo usuário. Os algoritmos desenvolvidos foram implementados utilizando a Slim-tree, mas outros métodos de acesso podem ser extendidos para utilizá-los também. Os algoritmos contemplam consultas por abrangência e vizinhos mais próximos, além de algumas variações. Os algoritmos desenvolvidos foram testados e validados com conjuntos de dados sintéticos e reais, e mostraram-se capazes de obter respostas aproximadas com boa precisão utilizando apenas uma fração do tempo exigido pela consulta exata. Os resultados obtidos nos experimentos mostram que é possível obter respostas com precisão superior a 90% utilizando apenas metade do tempo da consulta exata com o algoritmo convencional, e até 65% de precisão com apenas um quinto do tempo da consulta exata.
id USP_4ee2325e4523b7cae1cc293375b55a3e
oai_identifier_str oai:teses.usp.br:tde-21112014-172348
network_acronym_str USP
network_name_str Biblioteca Digital de Teses e Dissertações da USP
repository_id_str 2721
spelling Desenvolvimento de algoritmos genéticos para consultas por similaridade em domínios métricosGenetic algorithms for similarity queries in metric spacesNão disponívelNot availableO custo do acesso exato a dados complexos tende a ser muito alto, do ponto de vista da carga de processamento computacional. Além disso, a operação de busca em dados multimídia não é efetuada realmente sobre os dados originais, mas sobre características extraídas desses dados, as quais os descrevem. Por exemplo, na busca por imagens similares utilizando-se histogramas de cor, realizando uma consulta exata, o que se obtém são as imagens cujos histogramas são exatamente os mais similares aos da imagem referenciada 11a consulta, mas isso não implica necessariamente que se obtenha as imagens que atendam exatamente a consulta efetuada, pois as imagens recuperadas podem ser muito diferentes quanto a forma, por exemplo. Portanto, em muitas aplicações que acessam dados complexos, a recuperação exata deixa de um requisito fundamental, podendo a exatidão das respostas ser trocada por um melhor desempenho Neste trabalho foram desenvolvidos algoritmos para recuperação aproximada do conjunto-resposta de consultas por similaridade em domínios métricos utilizando algoritmos genéticos. Neste trabalho, com a utilização de algoritmos genéticos, foram desenvolvidas técnicas de recuperação aproximada de dados cm domínio métrico, cujo refinamento das respostas obtidas é dependente do tempo de processamento disponível, definido pelo usuário. Os algoritmos desenvolvidos foram implementados utilizando a Slim-tree, mas outros métodos de acesso podem ser extendidos para utilizá-los também. Os algoritmos contemplam consultas por abrangência e vizinhos mais próximos, além de algumas variações. Os algoritmos desenvolvidos foram testados e validados com conjuntos de dados sintéticos e reais, e mostraram-se capazes de obter respostas aproximadas com boa precisão utilizando apenas uma fração do tempo exigido pela consulta exata. Os resultados obtidos nos experimentos mostram que é possível obter respostas com precisão superior a 90% utilizando apenas metade do tempo da consulta exata com o algoritmo convencional, e até 65% de precisão com apenas um quinto do tempo da consulta exata.I search process on complex domains for exact answer to a similarity query is an expensive process considering computational resources, such as memory and processing time requirements. However, when comparing multimédia dal,a, the comparison operations usually consider some properties of each daturn element, so exact queries involving this data return results tliat are exact regarding the properties compared, but not necessarily exact regarding the multimedia data itself. For example, searching for similar images regarding their colors return images whose color histogram are the most similar, but the retrieved images can be very different regarding for example the forni of the objects pietured. Therefore, for applications dealing with complex data types, trading exact answering with query time response can be a worth exchange. In this work we developed techniques based 011 genetic algorithms to allow retrieving approximate data indexed in a Metric Access Methods (MAMs) within a limited, user-defined, amount of time. For evaluation purposes, the algorithms were developed regarding the Slim-lrce, but the approximate query techniques developed in this work can be straightforwardly implemented on other MAMs. The algorithms can be used to perform nearest neighbor queries, range queries and some other variations. Svnthetic and real world datasets were used to evaluate the approximate algorithms, achieving good results in a fraetion of the time required to obtain the exact answer. The experimental results show that, allowing the algorithm to run during 50% of the exact query time, the precision of the approximate results is about 90%, and precision of 65% can be obtained consuming just 20% of the same exact query time.Biblioteca Digitais de Teses e Dissertações da USPTraina Junior, CaetanoBueno, Renato2005-05-30info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://www.teses.usp.br/teses/disponiveis/55/55134/tde-21112014-172348/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesspor2016-07-28T16:11:55Zoai:teses.usp.br:tde-21112014-172348Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212016-07-28T16:11:55Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false
dc.title.none.fl_str_mv Desenvolvimento de algoritmos genéticos para consultas por similaridade em domínios métricos
Genetic algorithms for similarity queries in metric spaces
title Desenvolvimento de algoritmos genéticos para consultas por similaridade em domínios métricos
spellingShingle Desenvolvimento de algoritmos genéticos para consultas por similaridade em domínios métricos
Bueno, Renato
Não disponível
Not available
title_short Desenvolvimento de algoritmos genéticos para consultas por similaridade em domínios métricos
title_full Desenvolvimento de algoritmos genéticos para consultas por similaridade em domínios métricos
title_fullStr Desenvolvimento de algoritmos genéticos para consultas por similaridade em domínios métricos
title_full_unstemmed Desenvolvimento de algoritmos genéticos para consultas por similaridade em domínios métricos
title_sort Desenvolvimento de algoritmos genéticos para consultas por similaridade em domínios métricos
author Bueno, Renato
author_facet Bueno, Renato
author_role author
dc.contributor.none.fl_str_mv Traina Junior, Caetano
dc.contributor.author.fl_str_mv Bueno, Renato
dc.subject.por.fl_str_mv Não disponível
Not available
topic Não disponível
Not available
description O custo do acesso exato a dados complexos tende a ser muito alto, do ponto de vista da carga de processamento computacional. Além disso, a operação de busca em dados multimídia não é efetuada realmente sobre os dados originais, mas sobre características extraídas desses dados, as quais os descrevem. Por exemplo, na busca por imagens similares utilizando-se histogramas de cor, realizando uma consulta exata, o que se obtém são as imagens cujos histogramas são exatamente os mais similares aos da imagem referenciada 11a consulta, mas isso não implica necessariamente que se obtenha as imagens que atendam exatamente a consulta efetuada, pois as imagens recuperadas podem ser muito diferentes quanto a forma, por exemplo. Portanto, em muitas aplicações que acessam dados complexos, a recuperação exata deixa de um requisito fundamental, podendo a exatidão das respostas ser trocada por um melhor desempenho Neste trabalho foram desenvolvidos algoritmos para recuperação aproximada do conjunto-resposta de consultas por similaridade em domínios métricos utilizando algoritmos genéticos. Neste trabalho, com a utilização de algoritmos genéticos, foram desenvolvidas técnicas de recuperação aproximada de dados cm domínio métrico, cujo refinamento das respostas obtidas é dependente do tempo de processamento disponível, definido pelo usuário. Os algoritmos desenvolvidos foram implementados utilizando a Slim-tree, mas outros métodos de acesso podem ser extendidos para utilizá-los também. Os algoritmos contemplam consultas por abrangência e vizinhos mais próximos, além de algumas variações. Os algoritmos desenvolvidos foram testados e validados com conjuntos de dados sintéticos e reais, e mostraram-se capazes de obter respostas aproximadas com boa precisão utilizando apenas uma fração do tempo exigido pela consulta exata. Os resultados obtidos nos experimentos mostram que é possível obter respostas com precisão superior a 90% utilizando apenas metade do tempo da consulta exata com o algoritmo convencional, e até 65% de precisão com apenas um quinto do tempo da consulta exata.
publishDate 2005
dc.date.none.fl_str_mv 2005-05-30
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://www.teses.usp.br/teses/disponiveis/55/55134/tde-21112014-172348/
url http://www.teses.usp.br/teses/disponiveis/55/55134/tde-21112014-172348/
dc.language.iso.fl_str_mv por
language por
dc.relation.none.fl_str_mv
dc.rights.driver.fl_str_mv Liberar o conteúdo para acesso público.
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Liberar o conteúdo para acesso público.
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.coverage.none.fl_str_mv
dc.publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
dc.source.none.fl_str_mv
reponame:Biblioteca Digital de Teses e Dissertações da USP
instname:Universidade de São Paulo (USP)
instacron:USP
instname_str Universidade de São Paulo (USP)
instacron_str USP
institution USP
reponame_str Biblioteca Digital de Teses e Dissertações da USP
collection Biblioteca Digital de Teses e Dissertações da USP
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)
repository.mail.fl_str_mv virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br
_version_ 1815257254018940928