Análise espaço-temporal de data streams multidimensionais

Detalhes bibliográficos
Autor(a) principal: Nunes, Santiago Augusto
Data de Publicação: 2015
Tipo de documento: Dissertação
Idioma: por
Título da fonte: Biblioteca Digital de Teses e Dissertações da USP
Texto Completo: http://www.teses.usp.br/teses/disponiveis/55/55134/tde-17102016-152137/
Resumo: Fluxos de dados são usualmente caracterizados por grandes quantidades de dados gerados continuamente em processos síncronos ou assíncronos potencialmente infinitos, em aplicações como: sistemas meteorológicos, processos industriais, tráfego de veículos, transações financeiras, redes de sensores, entre outras. Além disso, o comportamento dos dados tende a sofrer alterações significativas ao longo do tempo, definindo data streams evolutivos. Estas alterações podem significar eventos temporários (como anomalias ou eventos extremos) ou mudanças relevantes no processo de geração da stream (que resultam em alterações na distribuição dos dados). Além disso, esses conjuntos de dados podem possuir características espaciais, como a localização geográfica de sensores, que podem ser úteis no processo de análise. A detecção dessas variações de comportamento que considere os aspectos da evolução temporal, assim como as características espaciais dos dados, é relevante em alguns tipos de aplicação, como o monitoramento de eventos climáticos extremos em pesquisas na área de Agrometeorologia. Nesse contexto, esse projeto de mestrado propõe uma técnica para auxiliar a análise espaço-temporal em data streams multidimensionais que contenham informações espaciais e não espaciais. A abordagem adotada é baseada em conceitos da Teoria de Fractais, utilizados para análise de comportamento temporal, assim como técnicas para manipulação de data streams e estruturas de dados hierárquicas, visando permitir uma análise que leve em consideração os aspectos espaciais e não espaciais simultaneamente. A técnica desenvolvida foi aplicada a dados agrometeorológicos, visando identificar comportamentos distintos considerando diferentes sub-regiões definidas pelas características espaciais dos dados. Portanto, os resultados deste trabalho incluem contribuições para a área de mineração de dados e de apoio a pesquisas em Agrometeorologia.
id USP_4f868d6c830f9b70511ac96079b2532a
oai_identifier_str oai:teses.usp.br:tde-17102016-152137
network_acronym_str USP
network_name_str Biblioteca Digital de Teses e Dissertações da USP
repository_id_str 2721
spelling Análise espaço-temporal de data streams multidimensionaisSpatio-temporal analysis in multidimensional data streamsAnálise espaço-temporalData miningData streams multidimensionais.fractalsMineração de dadosMultidimensional data streamsSpatio-temporal analysisTeoria dos fractaisFluxos de dados são usualmente caracterizados por grandes quantidades de dados gerados continuamente em processos síncronos ou assíncronos potencialmente infinitos, em aplicações como: sistemas meteorológicos, processos industriais, tráfego de veículos, transações financeiras, redes de sensores, entre outras. Além disso, o comportamento dos dados tende a sofrer alterações significativas ao longo do tempo, definindo data streams evolutivos. Estas alterações podem significar eventos temporários (como anomalias ou eventos extremos) ou mudanças relevantes no processo de geração da stream (que resultam em alterações na distribuição dos dados). Além disso, esses conjuntos de dados podem possuir características espaciais, como a localização geográfica de sensores, que podem ser úteis no processo de análise. A detecção dessas variações de comportamento que considere os aspectos da evolução temporal, assim como as características espaciais dos dados, é relevante em alguns tipos de aplicação, como o monitoramento de eventos climáticos extremos em pesquisas na área de Agrometeorologia. Nesse contexto, esse projeto de mestrado propõe uma técnica para auxiliar a análise espaço-temporal em data streams multidimensionais que contenham informações espaciais e não espaciais. A abordagem adotada é baseada em conceitos da Teoria de Fractais, utilizados para análise de comportamento temporal, assim como técnicas para manipulação de data streams e estruturas de dados hierárquicas, visando permitir uma análise que leve em consideração os aspectos espaciais e não espaciais simultaneamente. A técnica desenvolvida foi aplicada a dados agrometeorológicos, visando identificar comportamentos distintos considerando diferentes sub-regiões definidas pelas características espaciais dos dados. Portanto, os resultados deste trabalho incluem contribuições para a área de mineração de dados e de apoio a pesquisas em Agrometeorologia.Data streams are usually characterized by large amounts of data generated continuously in synchronous or asynchronous potentially infinite processes, in applications such as: meteorological systems, industrial processes, vehicle traffic, financial transactions, sensor networks, among others. In addition, the behavior of the data tends to change significantly over time, defining evolutionary data streams. These changes may mean temporary events (such as anomalies or extreme events) or relevant changes in the process of generating the stream (that result in changes in the distribution of the data). Furthermore, these data sets can have spatial characteristics such as geographic location of sensors, which can be useful in the analysis process. The detection of these behavioral changes considering aspects of evolution, as well as the spatial characteristics of the data, is relevant for some types of applications, such as monitoring of extreme weather events in Agrometeorology researches. In this context, this project proposes a technique to help spatio-temporal analysis in multidimensional data streams containing spatial and non-spatial information. The adopted approach is based on concepts of the Fractal Theory, used for temporal behavior analysis, as well as techniques for data streams handling also hierarchical data structures, allowing analysis tasks that take into account the spatial and non-spatial aspects simultaneously. The developed technique has been applied to agro-meteorological data to identify different behaviors considering different sub-regions defined by the spatial characteristics of the data. Therefore, results from this work include contribution to data mining area and support research in Agrometeorology.Biblioteca Digitais de Teses e Dissertações da USPSousa, Elaine Parros Machado deNunes, Santiago Augusto2015-04-06info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://www.teses.usp.br/teses/disponiveis/55/55134/tde-17102016-152137/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesspor2017-09-04T21:05:32Zoai:teses.usp.br:tde-17102016-152137Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212017-09-04T21:05:32Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false
dc.title.none.fl_str_mv Análise espaço-temporal de data streams multidimensionais
Spatio-temporal analysis in multidimensional data streams
title Análise espaço-temporal de data streams multidimensionais
spellingShingle Análise espaço-temporal de data streams multidimensionais
Nunes, Santiago Augusto
Análise espaço-temporal
Data mining
Data streams multidimensionais.
fractals
Mineração de dados
Multidimensional data streams
Spatio-temporal analysis
Teoria dos fractais
title_short Análise espaço-temporal de data streams multidimensionais
title_full Análise espaço-temporal de data streams multidimensionais
title_fullStr Análise espaço-temporal de data streams multidimensionais
title_full_unstemmed Análise espaço-temporal de data streams multidimensionais
title_sort Análise espaço-temporal de data streams multidimensionais
author Nunes, Santiago Augusto
author_facet Nunes, Santiago Augusto
author_role author
dc.contributor.none.fl_str_mv Sousa, Elaine Parros Machado de
dc.contributor.author.fl_str_mv Nunes, Santiago Augusto
dc.subject.por.fl_str_mv Análise espaço-temporal
Data mining
Data streams multidimensionais.
fractals
Mineração de dados
Multidimensional data streams
Spatio-temporal analysis
Teoria dos fractais
topic Análise espaço-temporal
Data mining
Data streams multidimensionais.
fractals
Mineração de dados
Multidimensional data streams
Spatio-temporal analysis
Teoria dos fractais
description Fluxos de dados são usualmente caracterizados por grandes quantidades de dados gerados continuamente em processos síncronos ou assíncronos potencialmente infinitos, em aplicações como: sistemas meteorológicos, processos industriais, tráfego de veículos, transações financeiras, redes de sensores, entre outras. Além disso, o comportamento dos dados tende a sofrer alterações significativas ao longo do tempo, definindo data streams evolutivos. Estas alterações podem significar eventos temporários (como anomalias ou eventos extremos) ou mudanças relevantes no processo de geração da stream (que resultam em alterações na distribuição dos dados). Além disso, esses conjuntos de dados podem possuir características espaciais, como a localização geográfica de sensores, que podem ser úteis no processo de análise. A detecção dessas variações de comportamento que considere os aspectos da evolução temporal, assim como as características espaciais dos dados, é relevante em alguns tipos de aplicação, como o monitoramento de eventos climáticos extremos em pesquisas na área de Agrometeorologia. Nesse contexto, esse projeto de mestrado propõe uma técnica para auxiliar a análise espaço-temporal em data streams multidimensionais que contenham informações espaciais e não espaciais. A abordagem adotada é baseada em conceitos da Teoria de Fractais, utilizados para análise de comportamento temporal, assim como técnicas para manipulação de data streams e estruturas de dados hierárquicas, visando permitir uma análise que leve em consideração os aspectos espaciais e não espaciais simultaneamente. A técnica desenvolvida foi aplicada a dados agrometeorológicos, visando identificar comportamentos distintos considerando diferentes sub-regiões definidas pelas características espaciais dos dados. Portanto, os resultados deste trabalho incluem contribuições para a área de mineração de dados e de apoio a pesquisas em Agrometeorologia.
publishDate 2015
dc.date.none.fl_str_mv 2015-04-06
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://www.teses.usp.br/teses/disponiveis/55/55134/tde-17102016-152137/
url http://www.teses.usp.br/teses/disponiveis/55/55134/tde-17102016-152137/
dc.language.iso.fl_str_mv por
language por
dc.relation.none.fl_str_mv
dc.rights.driver.fl_str_mv Liberar o conteúdo para acesso público.
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Liberar o conteúdo para acesso público.
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.coverage.none.fl_str_mv
dc.publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
dc.source.none.fl_str_mv
reponame:Biblioteca Digital de Teses e Dissertações da USP
instname:Universidade de São Paulo (USP)
instacron:USP
instname_str Universidade de São Paulo (USP)
instacron_str USP
institution USP
reponame_str Biblioteca Digital de Teses e Dissertações da USP
collection Biblioteca Digital de Teses e Dissertações da USP
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)
repository.mail.fl_str_mv virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br
_version_ 1815257051108999168