Detecção de faces humanas em imagens digitais: um algoritmo baseado em lógica nebulosa
Autor(a) principal: | |
---|---|
Data de Publicação: | 2005 |
Tipo de documento: | Dissertação |
Idioma: | por |
Título da fonte: | Biblioteca Digital de Teses e Dissertações da USP |
Texto Completo: | http://www.teses.usp.br/teses/disponiveis/18/18133/tde-19052017-150435/ |
Resumo: | Este trabalho tem como objetivo desenvolver uma metodologia baseada em lógica nebulosa, (KLIR ; YUAN, 1995) para detectar faces humanas em imagens digitais. Considerando que pessoas conseguem reconhecer facilmente as faces humanas, este trabalho prevê a pesquisa da informação relativa a esse reconhecimento utilizando os resultados obtidos, em um esquema \"fuzzy\", para identificação de faces humanas em imagens digitais. É proposto então um algoritmo que classifique automaticamente as regiões de uma imagem em faces humanas ou não. O conhecimento para a construção da base de regras foi obtido através de informações das pessoas por meio de uma pesquisa de campo onde as respostas foram numericamente armazenadas para a geração da classificação nebulosa. Foram gerados desenhos line-draw que de uma maneira global representam as faces humanas. Esses desenhos foram apresentados às pessoas entrevistadas que forneceram subsídios para a montagem das regras \"fuzzy\". O algoritmo foi capaz de a partir daí, identificar faces humanas em imagens digitalizadas. Imagens simples contendo uma face frontal foram submetidas a um algoritmo e ao passarem por processamento (extração de bordas, erosão, binarização, etc...) perderam características, tornando difícil sua identificação. O algoritmo \"fuzzy\" foi capaz de atribuir um grau de pertinência à imagem dentro do conjunto de faces humanas frontais. A lógica nebulosa possui história recente, porém, desde cedo, demonstra sua versatilidade, principalmente por traduzir modelos não lineares ou imprecisos, os quais não apresentam convergência através de modelagem matemática convencional. |
id |
USP_4feaf63c2a4f20758feb6e60680ff83f |
---|---|
oai_identifier_str |
oai:teses.usp.br:tde-19052017-150435 |
network_acronym_str |
USP |
network_name_str |
Biblioteca Digital de Teses e Dissertações da USP |
repository_id_str |
2721 |
spelling |
Detecção de faces humanas em imagens digitais: um algoritmo baseado em lógica nebulosaDetection of human faces in digital images: an algorithm based on Fuzzy logicBiometriaBiometryDetecção de facesFace detectionFuzzy logicImage processingLógica "Fuzzy"Processamento de imagensEste trabalho tem como objetivo desenvolver uma metodologia baseada em lógica nebulosa, (KLIR ; YUAN, 1995) para detectar faces humanas em imagens digitais. Considerando que pessoas conseguem reconhecer facilmente as faces humanas, este trabalho prevê a pesquisa da informação relativa a esse reconhecimento utilizando os resultados obtidos, em um esquema \"fuzzy\", para identificação de faces humanas em imagens digitais. É proposto então um algoritmo que classifique automaticamente as regiões de uma imagem em faces humanas ou não. O conhecimento para a construção da base de regras foi obtido através de informações das pessoas por meio de uma pesquisa de campo onde as respostas foram numericamente armazenadas para a geração da classificação nebulosa. Foram gerados desenhos line-draw que de uma maneira global representam as faces humanas. Esses desenhos foram apresentados às pessoas entrevistadas que forneceram subsídios para a montagem das regras \"fuzzy\". O algoritmo foi capaz de a partir daí, identificar faces humanas em imagens digitalizadas. Imagens simples contendo uma face frontal foram submetidas a um algoritmo e ao passarem por processamento (extração de bordas, erosão, binarização, etc...) perderam características, tornando difícil sua identificação. O algoritmo \"fuzzy\" foi capaz de atribuir um grau de pertinência à imagem dentro do conjunto de faces humanas frontais. A lógica nebulosa possui história recente, porém, desde cedo, demonstra sua versatilidade, principalmente por traduzir modelos não lineares ou imprecisos, os quais não apresentam convergência através de modelagem matemática convencional.The present master dissertation aims to develop a methodology based on fuzzy pattern (KLIR; YUAN, 1995) to detect human faces in digital images. Considering that people are easily able to recognize human faces, this study foresees the research of the relative information to this recognition using the acquire results, in a \"fuzzy\" scheme, for the identification of human faces in digital images. It\'s proposed an algorithm which automatically classifies or not the regions of an image in human faces. It is based on the information acquired from people by means of a field research where the answers are stored numerically for the creation of the fuzzy classification. Drawings line-draw were created to represent human faces and were presented to the people interviewed to furnish information for the creation of the fuzzy rules. After that the algorithm was able to identify human faces in digitalized images. The algorithm utilizes simple images containing a frontal face, which lose their characteristics when they are processed (edges extration, erosion, binary image, etc...) and make their identification difficult. The fuzzy algorithm is also able to classify the images within the set of frontal human faces. The fuzzy logic has a recent history, however, it has always demonstrated its versatility, mainly regarding the translation of non-linear or inexact models which do not present conventional mathematical convergence through modeling.Biblioteca Digitais de Teses e Dissertações da USPGonzaga, AdilsonNascimento, Andréia Vieira do2005-03-17info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://www.teses.usp.br/teses/disponiveis/18/18133/tde-19052017-150435/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesspor2018-07-19T15:44:41Zoai:teses.usp.br:tde-19052017-150435Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212018-07-19T15:44:41Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false |
dc.title.none.fl_str_mv |
Detecção de faces humanas em imagens digitais: um algoritmo baseado em lógica nebulosa Detection of human faces in digital images: an algorithm based on Fuzzy logic |
title |
Detecção de faces humanas em imagens digitais: um algoritmo baseado em lógica nebulosa |
spellingShingle |
Detecção de faces humanas em imagens digitais: um algoritmo baseado em lógica nebulosa Nascimento, Andréia Vieira do Biometria Biometry Detecção de faces Face detection Fuzzy logic Image processing Lógica "Fuzzy" Processamento de imagens |
title_short |
Detecção de faces humanas em imagens digitais: um algoritmo baseado em lógica nebulosa |
title_full |
Detecção de faces humanas em imagens digitais: um algoritmo baseado em lógica nebulosa |
title_fullStr |
Detecção de faces humanas em imagens digitais: um algoritmo baseado em lógica nebulosa |
title_full_unstemmed |
Detecção de faces humanas em imagens digitais: um algoritmo baseado em lógica nebulosa |
title_sort |
Detecção de faces humanas em imagens digitais: um algoritmo baseado em lógica nebulosa |
author |
Nascimento, Andréia Vieira do |
author_facet |
Nascimento, Andréia Vieira do |
author_role |
author |
dc.contributor.none.fl_str_mv |
Gonzaga, Adilson |
dc.contributor.author.fl_str_mv |
Nascimento, Andréia Vieira do |
dc.subject.por.fl_str_mv |
Biometria Biometry Detecção de faces Face detection Fuzzy logic Image processing Lógica "Fuzzy" Processamento de imagens |
topic |
Biometria Biometry Detecção de faces Face detection Fuzzy logic Image processing Lógica "Fuzzy" Processamento de imagens |
description |
Este trabalho tem como objetivo desenvolver uma metodologia baseada em lógica nebulosa, (KLIR ; YUAN, 1995) para detectar faces humanas em imagens digitais. Considerando que pessoas conseguem reconhecer facilmente as faces humanas, este trabalho prevê a pesquisa da informação relativa a esse reconhecimento utilizando os resultados obtidos, em um esquema \"fuzzy\", para identificação de faces humanas em imagens digitais. É proposto então um algoritmo que classifique automaticamente as regiões de uma imagem em faces humanas ou não. O conhecimento para a construção da base de regras foi obtido através de informações das pessoas por meio de uma pesquisa de campo onde as respostas foram numericamente armazenadas para a geração da classificação nebulosa. Foram gerados desenhos line-draw que de uma maneira global representam as faces humanas. Esses desenhos foram apresentados às pessoas entrevistadas que forneceram subsídios para a montagem das regras \"fuzzy\". O algoritmo foi capaz de a partir daí, identificar faces humanas em imagens digitalizadas. Imagens simples contendo uma face frontal foram submetidas a um algoritmo e ao passarem por processamento (extração de bordas, erosão, binarização, etc...) perderam características, tornando difícil sua identificação. O algoritmo \"fuzzy\" foi capaz de atribuir um grau de pertinência à imagem dentro do conjunto de faces humanas frontais. A lógica nebulosa possui história recente, porém, desde cedo, demonstra sua versatilidade, principalmente por traduzir modelos não lineares ou imprecisos, os quais não apresentam convergência através de modelagem matemática convencional. |
publishDate |
2005 |
dc.date.none.fl_str_mv |
2005-03-17 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://www.teses.usp.br/teses/disponiveis/18/18133/tde-19052017-150435/ |
url |
http://www.teses.usp.br/teses/disponiveis/18/18133/tde-19052017-150435/ |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.relation.none.fl_str_mv |
|
dc.rights.driver.fl_str_mv |
Liberar o conteúdo para acesso público. info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Liberar o conteúdo para acesso público. |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.coverage.none.fl_str_mv |
|
dc.publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações da USP instname:Universidade de São Paulo (USP) instacron:USP |
instname_str |
Universidade de São Paulo (USP) |
instacron_str |
USP |
institution |
USP |
reponame_str |
Biblioteca Digital de Teses e Dissertações da USP |
collection |
Biblioteca Digital de Teses e Dissertações da USP |
repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP) |
repository.mail.fl_str_mv |
virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br |
_version_ |
1815257169571872768 |