Overcoming challenging crban images: deep learning and data integration methods for detecting trees entangled with power lines

Detalhes bibliográficos
Autor(a) principal: Oliveira, Artur Andre Almeida de Macedo
Data de Publicação: 2023
Tipo de documento: Tese
Idioma: eng
Título da fonte: Biblioteca Digital de Teses e Dissertações da USP
Texto Completo: https://www.teses.usp.br/teses/disponiveis/45/45134/tde-22032024-184659/
Resumo: Urban image classification at the street-level poses significant challenges due to the presence of diverse elements, varying appearances, and complex poses. Factors such as occlusion, background clutter, environmental conditions, and camera viewpoints further complicate the classification process. In this study, we leverage the capabilities of state-of-the-art Deep Learning Networks (DLNs), including MobileNets, ResNets, DenseNets, and EfficientNets, to tackle these challenges head-on. We aim to evaluate the performance of these DLNs, identify limitations, and propose innovative techniques for overcoming them. Our research focuses on the specific task of classifying urban images with or without trees near overhead powerlines. Through an extensive exploration, we provide methods and insights that not only address this classification problem but also offer generalizable solutions applicable to a range of classification tasks. Two major contributions are introduced in our work. Firstly, we extend the INvestigate and Analyze a CITY (INACITY) platform by integrating a graph-oriented database, improving the performance and coverage of urban image collection from Google Street View. Secondly, we develop the Street-Level Image Labeler (SLIL) tool, which efficiently mitigates the manual labeling burden, facilitating dataset creation. With the help of INACITY and SLIL, we curate a comprehensive labeled dataset comprising 8,800 street-level urban images. Human evaluation of the dataset reveals the presence of challenging images that perplex even experienced classifiers. For example, distinguishing whether powerlines intersect or pass behind tree canopies can be difficult depending on the perspective. The comparison of state-of-the-art DLNs on this dataset reveals that the highest accuracy achieved by plain DLNs is 74.6%. However, by introducing a new class \\emph distinct from positive or negative, and employing the noisy student training protocol and focal loss, we effectively enhance the recall rates for positive and negative classes respectively from 66.5% and 63.7% to 83.7% and 78.8%. This approach enables us to better identify and classify images that were previously prone to misclassification.
id USP_4fff26025b6445ea3c14110a2ab236ea
oai_identifier_str oai:teses.usp.br:tde-22032024-184659
network_acronym_str USP
network_name_str Biblioteca Digital de Teses e Dissertações da USP
repository_id_str 2721
spelling Overcoming challenging crban images: deep learning and data integration methods for detecting trees entangled with power linesSuperando imagens urbanas desafiantes: métodos de aprendizagem profunda e integração de dados para deteção de emaranhamentos entre árvores e fios elétricosAprendizagem profundaComputer visionDeep learningDificuldade de instânciaImagens urbanasInstance hardnessUrban imagesVisão computacionalUrban image classification at the street-level poses significant challenges due to the presence of diverse elements, varying appearances, and complex poses. Factors such as occlusion, background clutter, environmental conditions, and camera viewpoints further complicate the classification process. In this study, we leverage the capabilities of state-of-the-art Deep Learning Networks (DLNs), including MobileNets, ResNets, DenseNets, and EfficientNets, to tackle these challenges head-on. We aim to evaluate the performance of these DLNs, identify limitations, and propose innovative techniques for overcoming them. Our research focuses on the specific task of classifying urban images with or without trees near overhead powerlines. Through an extensive exploration, we provide methods and insights that not only address this classification problem but also offer generalizable solutions applicable to a range of classification tasks. Two major contributions are introduced in our work. Firstly, we extend the INvestigate and Analyze a CITY (INACITY) platform by integrating a graph-oriented database, improving the performance and coverage of urban image collection from Google Street View. Secondly, we develop the Street-Level Image Labeler (SLIL) tool, which efficiently mitigates the manual labeling burden, facilitating dataset creation. With the help of INACITY and SLIL, we curate a comprehensive labeled dataset comprising 8,800 street-level urban images. Human evaluation of the dataset reveals the presence of challenging images that perplex even experienced classifiers. For example, distinguishing whether powerlines intersect or pass behind tree canopies can be difficult depending on the perspective. The comparison of state-of-the-art DLNs on this dataset reveals that the highest accuracy achieved by plain DLNs is 74.6%. However, by introducing a new class \\emph distinct from positive or negative, and employing the noisy student training protocol and focal loss, we effectively enhance the recall rates for positive and negative classes respectively from 66.5% and 63.7% to 83.7% and 78.8%. This approach enables us to better identify and classify images that were previously prone to misclassification.A classificação de imagens urbanas em nível de rua apresenta desafios devido à presença de diversos elementos, aparências variadas e poses complexas. Fatores como oclusão, confusão de fundo, condições climáticas e pontos de vista da câmera complicam ainda mais o processo de classificação. Neste estudo, aproveitamos as capacidades de redes de aprendizado profundo recentes, incluindo MobileNets, ResNets, DenseNets e EfficientNets, para enfrentar esses desafios. Nosso objetivo é avaliar o desempenho dessas redes, identificar limitações e propor novas técnicas para superá-las. Nossa pesquisa se concentra na tarefa específica de classificar imagens urbanas com ou sem árvores próximas à rede elétrica. Através de uma exploração extensiva, fornecemos métodos e insights úteis não só para esse problema de classificação, mas também aplicáveis a tarefas de classificação em outros domínios. Duas contribuições principais são introduzidas em nosso trabalho. Em primeiro lugar, ampliamos a plataforma INvestigate and Analyze a CITY (INACITY) integrando um banco de dados orientado a grafos, melhorando o desempenho e a cobertura da coleta de imagens urbanas com o Google Street View. Em segundo lugar, desenvolvemos a ferramenta Street-Level Image Labeler (SLIL), que reduz eficientemente o ônus de rotular imagens manualmente, facilitando a criação de conjuntos de dados. Com a ajuda do INACITY e do SLIL, criamos um conjunto de dados abrangente com 8.800 imagens urbanas em nível de rua rotuladas binariamente como contendo árvores próximas à rede elétrica (i.e. classe positiva) ou não (i.e. classe negativa). A avaliação humana do conjunto de dados revela a presença de imagens desafiadoras que confundem até mesmo classificadores experientes. Por exemplo, distinguir se fios de poste cruzam ou passam por trás das copas das árvores pode ser difícil, dependendo do ponto de vista da câmera. A comparação de redes neurais profundas recentes nesse conjunto de dados revela que a maior precisão alcançada por redes comuns é de 74,6%. No entanto, ao introduzir uma nova classe distinta da positiva ou negativa, a classe \\emph, e empregar o protocolo de treinamento \\emph{Noisy Student} e a função de custo \\emph{Focal Loss}, melhoramos efetivamente as taxas de revocação para as classe positiva de 66,5% para 83,7% e para a classe negativa de 63,7% para 78,8%. Essa abordagem nos permite identificar e classificar melhor imagens que anteriormente eram propensas a classificações incorretas.Biblioteca Digitais de Teses e Dissertações da USPHirata Junior, RobertoOliveira, Artur Andre Almeida de Macedo2023-08-11info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfhttps://www.teses.usp.br/teses/disponiveis/45/45134/tde-22032024-184659/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesseng2024-03-25T16:57:02Zoai:teses.usp.br:tde-22032024-184659Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212024-03-25T16:57:02Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false
dc.title.none.fl_str_mv Overcoming challenging crban images: deep learning and data integration methods for detecting trees entangled with power lines
Superando imagens urbanas desafiantes: métodos de aprendizagem profunda e integração de dados para deteção de emaranhamentos entre árvores e fios elétricos
title Overcoming challenging crban images: deep learning and data integration methods for detecting trees entangled with power lines
spellingShingle Overcoming challenging crban images: deep learning and data integration methods for detecting trees entangled with power lines
Oliveira, Artur Andre Almeida de Macedo
Aprendizagem profunda
Computer vision
Deep learning
Dificuldade de instância
Imagens urbanas
Instance hardness
Urban images
Visão computacional
title_short Overcoming challenging crban images: deep learning and data integration methods for detecting trees entangled with power lines
title_full Overcoming challenging crban images: deep learning and data integration methods for detecting trees entangled with power lines
title_fullStr Overcoming challenging crban images: deep learning and data integration methods for detecting trees entangled with power lines
title_full_unstemmed Overcoming challenging crban images: deep learning and data integration methods for detecting trees entangled with power lines
title_sort Overcoming challenging crban images: deep learning and data integration methods for detecting trees entangled with power lines
author Oliveira, Artur Andre Almeida de Macedo
author_facet Oliveira, Artur Andre Almeida de Macedo
author_role author
dc.contributor.none.fl_str_mv Hirata Junior, Roberto
dc.contributor.author.fl_str_mv Oliveira, Artur Andre Almeida de Macedo
dc.subject.por.fl_str_mv Aprendizagem profunda
Computer vision
Deep learning
Dificuldade de instância
Imagens urbanas
Instance hardness
Urban images
Visão computacional
topic Aprendizagem profunda
Computer vision
Deep learning
Dificuldade de instância
Imagens urbanas
Instance hardness
Urban images
Visão computacional
description Urban image classification at the street-level poses significant challenges due to the presence of diverse elements, varying appearances, and complex poses. Factors such as occlusion, background clutter, environmental conditions, and camera viewpoints further complicate the classification process. In this study, we leverage the capabilities of state-of-the-art Deep Learning Networks (DLNs), including MobileNets, ResNets, DenseNets, and EfficientNets, to tackle these challenges head-on. We aim to evaluate the performance of these DLNs, identify limitations, and propose innovative techniques for overcoming them. Our research focuses on the specific task of classifying urban images with or without trees near overhead powerlines. Through an extensive exploration, we provide methods and insights that not only address this classification problem but also offer generalizable solutions applicable to a range of classification tasks. Two major contributions are introduced in our work. Firstly, we extend the INvestigate and Analyze a CITY (INACITY) platform by integrating a graph-oriented database, improving the performance and coverage of urban image collection from Google Street View. Secondly, we develop the Street-Level Image Labeler (SLIL) tool, which efficiently mitigates the manual labeling burden, facilitating dataset creation. With the help of INACITY and SLIL, we curate a comprehensive labeled dataset comprising 8,800 street-level urban images. Human evaluation of the dataset reveals the presence of challenging images that perplex even experienced classifiers. For example, distinguishing whether powerlines intersect or pass behind tree canopies can be difficult depending on the perspective. The comparison of state-of-the-art DLNs on this dataset reveals that the highest accuracy achieved by plain DLNs is 74.6%. However, by introducing a new class \\emph distinct from positive or negative, and employing the noisy student training protocol and focal loss, we effectively enhance the recall rates for positive and negative classes respectively from 66.5% and 63.7% to 83.7% and 78.8%. This approach enables us to better identify and classify images that were previously prone to misclassification.
publishDate 2023
dc.date.none.fl_str_mv 2023-08-11
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://www.teses.usp.br/teses/disponiveis/45/45134/tde-22032024-184659/
url https://www.teses.usp.br/teses/disponiveis/45/45134/tde-22032024-184659/
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv
dc.rights.driver.fl_str_mv Liberar o conteúdo para acesso público.
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Liberar o conteúdo para acesso público.
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.coverage.none.fl_str_mv
dc.publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
dc.source.none.fl_str_mv
reponame:Biblioteca Digital de Teses e Dissertações da USP
instname:Universidade de São Paulo (USP)
instacron:USP
instname_str Universidade de São Paulo (USP)
instacron_str USP
institution USP
reponame_str Biblioteca Digital de Teses e Dissertações da USP
collection Biblioteca Digital de Teses e Dissertações da USP
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)
repository.mail.fl_str_mv virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br
_version_ 1815257265990533120