"Abordagem genética para seleção de um conjunto reduzido de características para construção de ensembles de redes neurais: aplicação à língua eletrônica"

Detalhes bibliográficos
Autor(a) principal: Ferreira, Ednaldo José
Data de Publicação: 2005
Tipo de documento: Dissertação
Idioma: por
Título da fonte: Biblioteca Digital de Teses e Dissertações da USP
Texto Completo: http://www.teses.usp.br/teses/disponiveis/55/55134/tde-18052006-143603/
Resumo: As características irrelevantes, presentes em bases de dados de diversos domínios, deterioram a acurácia de predição de classificadores induzidos por algoritmos de aprendizado de máquina. As bases de dados geradas por uma língua eletrônica são exemplos típicos onde a demasiada quantidade de características irrelevantes e redundantes prejudicam a acurácia dos classificadores induzidos. Para lidar com este problema, duas abordagens podem ser utilizadas. A primeira é a utilização de métodos para seleção de subconjuntos de características. A segunda abordagem é por meio de ensemble de classificadores. Um ensemble deve ser constituído por classificadores diversos e acurados. Uma forma efetiva para construção de ensembles de classificadores é por meio de seleção de características. A seleção de características para ensemble tem o objetivo adicional de encontrar subconjuntos de características que promovam acurácia e diversidade de predição nos classificadores do ensemble. Algoritmos genéticos são técnicas promissoras para seleção de características para ensemble. No entanto, a busca genética, assim como outras estratégias de busca, geralmente visam somente a construção do ensemble, permitindo que todas as características (relevantes, irrelevantes e redundantes) sejam utilizadas. Este trabalho apresenta uma abordagem baseada em algoritmos genéticos para construção de ensembles de redes neurais artificiais com um conjunto reduzido das características totais. Para melhorar a acurácia dos ensembles, duas abordagens diferenciadas para treinamento de redes neurais foram utilizadas. A primeira baseada na interrupção precoce do treinamento com o algoritmo back-propagation e a segunda baseada em otimização multi-objetivo. Os resultados obtidos comprovam a eficácia do algoritmo proposto para construção de ensembles de redes neurais acurados. Também foi constatada sua eficiência na redução das características totais, comprovando que o algoritmo proposto é capaz de construir um ensemble utilizando um conjunto reduzido de características.
id USP_5041f71006f560c7220e0e7e793d6bcf
oai_identifier_str oai:teses.usp.br:tde-18052006-143603
network_acronym_str USP
network_name_str Biblioteca Digital de Teses e Dissertações da USP
repository_id_str 2721
spelling "Abordagem genética para seleção de um conjunto reduzido de características para construção de ensembles de redes neurais: aplicação à língua eletrônica" A genetic approach to feature subset selection for construction of neural network ensembles: an application to gustative sensorsalgoritmo genéticoensembleensemblefeature subset selectiongenetic algorithmneural networksredes neurais artificiaisseleção de característicasAs características irrelevantes, presentes em bases de dados de diversos domínios, deterioram a acurácia de predição de classificadores induzidos por algoritmos de aprendizado de máquina. As bases de dados geradas por uma língua eletrônica são exemplos típicos onde a demasiada quantidade de características irrelevantes e redundantes prejudicam a acurácia dos classificadores induzidos. Para lidar com este problema, duas abordagens podem ser utilizadas. A primeira é a utilização de métodos para seleção de subconjuntos de características. A segunda abordagem é por meio de ensemble de classificadores. Um ensemble deve ser constituído por classificadores diversos e acurados. Uma forma efetiva para construção de ensembles de classificadores é por meio de seleção de características. A seleção de características para ensemble tem o objetivo adicional de encontrar subconjuntos de características que promovam acurácia e diversidade de predição nos classificadores do ensemble. Algoritmos genéticos são técnicas promissoras para seleção de características para ensemble. No entanto, a busca genética, assim como outras estratégias de busca, geralmente visam somente a construção do ensemble, permitindo que todas as características (relevantes, irrelevantes e redundantes) sejam utilizadas. Este trabalho apresenta uma abordagem baseada em algoritmos genéticos para construção de ensembles de redes neurais artificiais com um conjunto reduzido das características totais. Para melhorar a acurácia dos ensembles, duas abordagens diferenciadas para treinamento de redes neurais foram utilizadas. A primeira baseada na interrupção precoce do treinamento com o algoritmo back-propagation e a segunda baseada em otimização multi-objetivo. Os resultados obtidos comprovam a eficácia do algoritmo proposto para construção de ensembles de redes neurais acurados. Também foi constatada sua eficiência na redução das características totais, comprovando que o algoritmo proposto é capaz de construir um ensemble utilizando um conjunto reduzido de características.The irrelevant features in databases of some domains spoil the accuracy of the classifiers induced by machine learning algorithms. Databases generated by an electronic tongue are examples where the huge quantity of irrelevant and redundant features spoils the accuracy of classifiers. There are basically two approaches to deal with this problem: feature subset selection and ensemble of classifiers. A good ensemble is composed by accurate and diverse classifiers. An effective way to construct ensembles of classifiers is to make it through feature selection. The ensemble feature selection has an additional objective: to find feature subsets to promote accuracy and diversity in the ensemble of classifiers. Genetic algorithms are promising techniques for ensemble feature selection. However, genetic search, as well as other search strategies, only aims the ensemble construction, allowing the selection of all features (relevant, irrelevant and redundant). This work proposes an approach based on genetic algorithm to construct ensembles of neural networks using a reduced feature subset of totality. Two approaches were used to train neural networks to improve the ensembles accuracy. The first is based on early stopping with back-propagation algorithm and the second is based on multi-objective optimization. The results show the effectiveness and accuracy of the proposed algorithm to construct ensembles of neural networks, and also, its efficiency in the reduction of total features was evidenced, proving its capacity for constructing an ensemble using a reduced feature subset.Biblioteca Digitais de Teses e Dissertações da USPDelbem, Alexandre Cláudio BotazzoFerreira, Ednaldo José2005-08-10info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://www.teses.usp.br/teses/disponiveis/55/55134/tde-18052006-143603/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo somente para a comunidade da Universidade de São Paulo.info:eu-repo/semantics/openAccesspor2016-07-28T16:09:50Zoai:teses.usp.br:tde-18052006-143603Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212016-07-28T16:09:50Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false
dc.title.none.fl_str_mv "Abordagem genética para seleção de um conjunto reduzido de características para construção de ensembles de redes neurais: aplicação à língua eletrônica"
A genetic approach to feature subset selection for construction of neural network ensembles: an application to gustative sensors
title "Abordagem genética para seleção de um conjunto reduzido de características para construção de ensembles de redes neurais: aplicação à língua eletrônica"
spellingShingle "Abordagem genética para seleção de um conjunto reduzido de características para construção de ensembles de redes neurais: aplicação à língua eletrônica"
Ferreira, Ednaldo José
algoritmo genético
ensemble
ensemble
feature subset selection
genetic algorithm
neural networks
redes neurais artificiais
seleção de características
title_short "Abordagem genética para seleção de um conjunto reduzido de características para construção de ensembles de redes neurais: aplicação à língua eletrônica"
title_full "Abordagem genética para seleção de um conjunto reduzido de características para construção de ensembles de redes neurais: aplicação à língua eletrônica"
title_fullStr "Abordagem genética para seleção de um conjunto reduzido de características para construção de ensembles de redes neurais: aplicação à língua eletrônica"
title_full_unstemmed "Abordagem genética para seleção de um conjunto reduzido de características para construção de ensembles de redes neurais: aplicação à língua eletrônica"
title_sort "Abordagem genética para seleção de um conjunto reduzido de características para construção de ensembles de redes neurais: aplicação à língua eletrônica"
author Ferreira, Ednaldo José
author_facet Ferreira, Ednaldo José
author_role author
dc.contributor.none.fl_str_mv Delbem, Alexandre Cláudio Botazzo
dc.contributor.author.fl_str_mv Ferreira, Ednaldo José
dc.subject.por.fl_str_mv algoritmo genético
ensemble
ensemble
feature subset selection
genetic algorithm
neural networks
redes neurais artificiais
seleção de características
topic algoritmo genético
ensemble
ensemble
feature subset selection
genetic algorithm
neural networks
redes neurais artificiais
seleção de características
description As características irrelevantes, presentes em bases de dados de diversos domínios, deterioram a acurácia de predição de classificadores induzidos por algoritmos de aprendizado de máquina. As bases de dados geradas por uma língua eletrônica são exemplos típicos onde a demasiada quantidade de características irrelevantes e redundantes prejudicam a acurácia dos classificadores induzidos. Para lidar com este problema, duas abordagens podem ser utilizadas. A primeira é a utilização de métodos para seleção de subconjuntos de características. A segunda abordagem é por meio de ensemble de classificadores. Um ensemble deve ser constituído por classificadores diversos e acurados. Uma forma efetiva para construção de ensembles de classificadores é por meio de seleção de características. A seleção de características para ensemble tem o objetivo adicional de encontrar subconjuntos de características que promovam acurácia e diversidade de predição nos classificadores do ensemble. Algoritmos genéticos são técnicas promissoras para seleção de características para ensemble. No entanto, a busca genética, assim como outras estratégias de busca, geralmente visam somente a construção do ensemble, permitindo que todas as características (relevantes, irrelevantes e redundantes) sejam utilizadas. Este trabalho apresenta uma abordagem baseada em algoritmos genéticos para construção de ensembles de redes neurais artificiais com um conjunto reduzido das características totais. Para melhorar a acurácia dos ensembles, duas abordagens diferenciadas para treinamento de redes neurais foram utilizadas. A primeira baseada na interrupção precoce do treinamento com o algoritmo back-propagation e a segunda baseada em otimização multi-objetivo. Os resultados obtidos comprovam a eficácia do algoritmo proposto para construção de ensembles de redes neurais acurados. Também foi constatada sua eficiência na redução das características totais, comprovando que o algoritmo proposto é capaz de construir um ensemble utilizando um conjunto reduzido de características.
publishDate 2005
dc.date.none.fl_str_mv 2005-08-10
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://www.teses.usp.br/teses/disponiveis/55/55134/tde-18052006-143603/
url http://www.teses.usp.br/teses/disponiveis/55/55134/tde-18052006-143603/
dc.language.iso.fl_str_mv por
language por
dc.relation.none.fl_str_mv
dc.rights.driver.fl_str_mv Liberar o conteúdo somente para a comunidade da Universidade de São Paulo.
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Liberar o conteúdo somente para a comunidade da Universidade de São Paulo.
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.coverage.none.fl_str_mv
dc.publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
dc.source.none.fl_str_mv
reponame:Biblioteca Digital de Teses e Dissertações da USP
instname:Universidade de São Paulo (USP)
instacron:USP
instname_str Universidade de São Paulo (USP)
instacron_str USP
institution USP
reponame_str Biblioteca Digital de Teses e Dissertações da USP
collection Biblioteca Digital de Teses e Dissertações da USP
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)
repository.mail.fl_str_mv virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br
_version_ 1815257098203693056