Análise dinâmica não linear geométrica de estruturas e mecanismos reticulados planos com ligações deslizantes

Detalhes bibliográficos
Autor(a) principal: Siqueira, Tiago Morkis
Data de Publicação: 2016
Tipo de documento: Dissertação
Idioma: por
Título da fonte: Biblioteca Digital de Teses e Dissertações da USP
Texto Completo: http://www.teses.usp.br/teses/disponiveis/18/18134/tde-02032016-104021/
Resumo: Desenvolve-se uma formulação lagrangeana total do método dos elementos finitos para análise dinâmica de estruturas e mecanismos reticulados planos contendo ligações deslizantes sujeitas a grandes deslocamentos e rotações. Estas são introduzidas ao sistema mecânico na forma de juntas prismáticas e cilíndricas por meio do método dos multiplicadores de Lagrange, permitindo sua utilização na simulação de diversos tipos de estruturas e mecanismos. Também são consideradas rótulas entre as barras, estas introduzidas por meio da compatibilidade cinemática dos graus de liberdade dos nós comuns. A formulação do método dos elementos finitos adotada utiliza como parâmetros nodais as posições e os giros de modo desacoplado. Assim, pode-se utilizar a cinemática exata para barras de Reissner na análise de deslocamentos e giros finitos da estrutura. Adota-se o modelo constitutivo de Saint-Venant-Kirchhoff que relaciona a medida de deformação objetiva de Green-Lagrange com o tensor de tensões de Piola-Kirchhoff de segunda espécie. O equilíbrio dinâmico do sistema é obtido pelo princípio da energia total estacionária e a solução do sistema não linear de equações resultante é obtida pelo método de Newton-Raphson. A integração temporal é realizada pelo método de Newmark. São apresentados diversos exemplos para validação da formulação desenvolvida, os quais são comparados com soluções analíticas de modo a evidenciar as possibilidades de aplicação da formulação proposta.
id USP_5051f390dfc51093cf414a096584d8ac
oai_identifier_str oai:teses.usp.br:tde-02032016-104021
network_acronym_str USP
network_name_str Biblioteca Digital de Teses e Dissertações da USP
repository_id_str 2721
spelling Análise dinâmica não linear geométrica de estruturas e mecanismos reticulados planos com ligações deslizantesGeometrical nonlinear dynamical analysis of plane frame structures and mechanisms with sliding jointsDinâmica não linearLigações deslizantesMétodo dos elementos finitos posicionalNonlinear dynamicsPositional finite element methodSliding jointsDesenvolve-se uma formulação lagrangeana total do método dos elementos finitos para análise dinâmica de estruturas e mecanismos reticulados planos contendo ligações deslizantes sujeitas a grandes deslocamentos e rotações. Estas são introduzidas ao sistema mecânico na forma de juntas prismáticas e cilíndricas por meio do método dos multiplicadores de Lagrange, permitindo sua utilização na simulação de diversos tipos de estruturas e mecanismos. Também são consideradas rótulas entre as barras, estas introduzidas por meio da compatibilidade cinemática dos graus de liberdade dos nós comuns. A formulação do método dos elementos finitos adotada utiliza como parâmetros nodais as posições e os giros de modo desacoplado. Assim, pode-se utilizar a cinemática exata para barras de Reissner na análise de deslocamentos e giros finitos da estrutura. Adota-se o modelo constitutivo de Saint-Venant-Kirchhoff que relaciona a medida de deformação objetiva de Green-Lagrange com o tensor de tensões de Piola-Kirchhoff de segunda espécie. O equilíbrio dinâmico do sistema é obtido pelo princípio da energia total estacionária e a solução do sistema não linear de equações resultante é obtida pelo método de Newton-Raphson. A integração temporal é realizada pelo método de Newmark. São apresentados diversos exemplos para validação da formulação desenvolvida, os quais são comparados com soluções analíticas de modo a evidenciar as possibilidades de aplicação da formulação proposta.A total lagrangian finite element method formulation is developed for the dynamic analysis of plane frame structures and mechanisms containing sliding joints that undergoes large displacements and rotations. Those connections are introduced in the mechanical system as prismatic and cylindrical joints by the method of Lagrange multipliers, allowing its use on the simulation of several types of structures and mechanisms. Hinges between bars are also considered by kinematic compatibility of the degrees of freedom on the common node. The adopted finite element formulation uses as nodal parameters uncoupled positions and angles. Therefore, Reissner exact kinematics for bars can be utilized for structural finite deformation. The Saint-Venant-Kirchhoff constitutive model, which relates the objective Green-Lagrange strain measure with the second Piola-Kirchhoff stress tensor, is adopted. The principle of stationary total energy is used to obtain the dynamic nonlinear equilibrium of the system and the solution of the resulting nonlinear system of equations is done by the Newton-Raphson method. The Newmark method is adopted for time integration. Several examples are presented for the validation of the developed formulation, and those are compared with analytical solutions in order to clarify the possibilities of application of the proposed formulation.Biblioteca Digitais de Teses e Dissertações da USPCoda, Humberto BrevesSiqueira, Tiago Morkis2016-02-26info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://www.teses.usp.br/teses/disponiveis/18/18134/tde-02032016-104021/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesspor2017-09-04T21:06:18Zoai:teses.usp.br:tde-02032016-104021Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212017-09-04T21:06:18Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false
dc.title.none.fl_str_mv Análise dinâmica não linear geométrica de estruturas e mecanismos reticulados planos com ligações deslizantes
Geometrical nonlinear dynamical analysis of plane frame structures and mechanisms with sliding joints
title Análise dinâmica não linear geométrica de estruturas e mecanismos reticulados planos com ligações deslizantes
spellingShingle Análise dinâmica não linear geométrica de estruturas e mecanismos reticulados planos com ligações deslizantes
Siqueira, Tiago Morkis
Dinâmica não linear
Ligações deslizantes
Método dos elementos finitos posicional
Nonlinear dynamics
Positional finite element method
Sliding joints
title_short Análise dinâmica não linear geométrica de estruturas e mecanismos reticulados planos com ligações deslizantes
title_full Análise dinâmica não linear geométrica de estruturas e mecanismos reticulados planos com ligações deslizantes
title_fullStr Análise dinâmica não linear geométrica de estruturas e mecanismos reticulados planos com ligações deslizantes
title_full_unstemmed Análise dinâmica não linear geométrica de estruturas e mecanismos reticulados planos com ligações deslizantes
title_sort Análise dinâmica não linear geométrica de estruturas e mecanismos reticulados planos com ligações deslizantes
author Siqueira, Tiago Morkis
author_facet Siqueira, Tiago Morkis
author_role author
dc.contributor.none.fl_str_mv Coda, Humberto Breves
dc.contributor.author.fl_str_mv Siqueira, Tiago Morkis
dc.subject.por.fl_str_mv Dinâmica não linear
Ligações deslizantes
Método dos elementos finitos posicional
Nonlinear dynamics
Positional finite element method
Sliding joints
topic Dinâmica não linear
Ligações deslizantes
Método dos elementos finitos posicional
Nonlinear dynamics
Positional finite element method
Sliding joints
description Desenvolve-se uma formulação lagrangeana total do método dos elementos finitos para análise dinâmica de estruturas e mecanismos reticulados planos contendo ligações deslizantes sujeitas a grandes deslocamentos e rotações. Estas são introduzidas ao sistema mecânico na forma de juntas prismáticas e cilíndricas por meio do método dos multiplicadores de Lagrange, permitindo sua utilização na simulação de diversos tipos de estruturas e mecanismos. Também são consideradas rótulas entre as barras, estas introduzidas por meio da compatibilidade cinemática dos graus de liberdade dos nós comuns. A formulação do método dos elementos finitos adotada utiliza como parâmetros nodais as posições e os giros de modo desacoplado. Assim, pode-se utilizar a cinemática exata para barras de Reissner na análise de deslocamentos e giros finitos da estrutura. Adota-se o modelo constitutivo de Saint-Venant-Kirchhoff que relaciona a medida de deformação objetiva de Green-Lagrange com o tensor de tensões de Piola-Kirchhoff de segunda espécie. O equilíbrio dinâmico do sistema é obtido pelo princípio da energia total estacionária e a solução do sistema não linear de equações resultante é obtida pelo método de Newton-Raphson. A integração temporal é realizada pelo método de Newmark. São apresentados diversos exemplos para validação da formulação desenvolvida, os quais são comparados com soluções analíticas de modo a evidenciar as possibilidades de aplicação da formulação proposta.
publishDate 2016
dc.date.none.fl_str_mv 2016-02-26
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://www.teses.usp.br/teses/disponiveis/18/18134/tde-02032016-104021/
url http://www.teses.usp.br/teses/disponiveis/18/18134/tde-02032016-104021/
dc.language.iso.fl_str_mv por
language por
dc.relation.none.fl_str_mv
dc.rights.driver.fl_str_mv Liberar o conteúdo para acesso público.
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Liberar o conteúdo para acesso público.
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.coverage.none.fl_str_mv
dc.publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
dc.source.none.fl_str_mv
reponame:Biblioteca Digital de Teses e Dissertações da USP
instname:Universidade de São Paulo (USP)
instacron:USP
instname_str Universidade de São Paulo (USP)
instacron_str USP
institution USP
reponame_str Biblioteca Digital de Teses e Dissertações da USP
collection Biblioteca Digital de Teses e Dissertações da USP
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)
repository.mail.fl_str_mv virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br
_version_ 1815256601028722688