Effects caused by water-soluble chitosans with high molecular weight in bacterial and mammal membrane models using Langmuir monolayers

Detalhes bibliográficos
Autor(a) principal: Jochelavicius, Karen
Data de Publicação: 2022
Tipo de documento: Tese
Idioma: eng
Título da fonte: Biblioteca Digital de Teses e Dissertações da USP
Texto Completo: https://www.teses.usp.br/teses/disponiveis/76/76133/tde-31012023-154306/
Resumo: Lipid monolayers are well-known systems that mimic cell membrane environments, being used in a variety of studies involving molecules that affect the membrane structure. Incorporation of chitosans into lipid monolayers is known to cause expansion and, mostly, fluidization, having stronger effects on negatively charged monolayers and with low molecular weight chitosans. These effects are attributed to a combination of electrostatic and hydrophobic interactions, correlating well with the stronger interactions with the negatively charged bacterial cell membranes than for mammalian membranes. In this thesis, we shall present results that challenge these interpretations. First, we employ water-soluble chitosans that induce larger effects on zwitterionic phospholipids, namely dipalmitoyl phosphatidyl ethalonamine (DPPE) and dipalmitoyl phosphatidyl choline (DPPC), than on negatively charged dipalmitoyl phosphatidyl glycerol (DPPG). Slightly stronger effects are induced on the lipid extract of Escherichia coli (E. coli), except when compared to DPPE on acetate buffer. Even more relevant is the effect induced on monolayers prepared with a ternary mixture of DPPC, cholesterol (Chol) and sphingomyelin (SM) (SM-DPPC-Chol), which represents lipid rafts, for which effects appear at chitosan concentrations that are orders of magnitude smaller than reported in the literature for other chitosans or types of monolayer. The differences from the literature may be attributed to the high acetylation degree of one of the chitosans used, named Ch35% as it has a 35% acetylation degree. The charge in Ch35% was not sufficient for the electrostatic interactions to predominate over the hydrophobic interactions. The importance of charge availability for such interactions was confirmed by the larger monolayer expansion induced by Ch15%, a chitosan with 15% acetylation degree. Because both chitosans were water soluble, experiments could be made with subphases at physiological pH and at an acidic pH. Ch35% tend to have larger effects on monolayers deposited on the acidic pH, with a few exceptions when the larger volume occupied by the chitosan at a high pH led to larges expansions. Surprisingly, Ch15% induced larger effects on physiologic pH when incorporated in E. coli lipids, and this remains an open point. Also worth mentioning is that Ch35% and Ch15% have high molecular weights, ca. 106 g mol1, and still produced stronger effects than low molecular weight chitosans in previous studies, again contradicting expectations from the literature. In one hand, the larger effects induced on lipid rafts than on E. coli lipid extract calls for caution in the possible use of chitosans as bactericide agent; on the other hand, we observed a significant effect of Ch35% on monolayers of lipopolysaccharides (LPS), which represent the external wall of Gram-negative bacteria. Taken together, the results presented here indicate that charge availability and distribution in chitosans are probably the most important factor for their interaction with Langmuir monolayers, and the findings related to physiological pH and lipid rafts require a thorough revisit of studies on cell membrane models.
id USP_505e6424697231c0d0b063af81df94df
oai_identifier_str oai:teses.usp.br:tde-31012023-154306
network_acronym_str USP
network_name_str Biblioteca Digital de Teses e Dissertações da USP
repository_id_str 2721
spelling Effects caused by water-soluble chitosans with high molecular weight in bacterial and mammal membrane models using Langmuir monolayersEfeitos causados por quitosanas solúveis em água e de alta massa molar em modelos de membrana de mamíferos e bactérias, usando monocamadas de Langmuir.Atividade bactericidaBactericide activityChitosanLangmuir monolayersMonocamadas de LangmuirQuitosanaLipid monolayers are well-known systems that mimic cell membrane environments, being used in a variety of studies involving molecules that affect the membrane structure. Incorporation of chitosans into lipid monolayers is known to cause expansion and, mostly, fluidization, having stronger effects on negatively charged monolayers and with low molecular weight chitosans. These effects are attributed to a combination of electrostatic and hydrophobic interactions, correlating well with the stronger interactions with the negatively charged bacterial cell membranes than for mammalian membranes. In this thesis, we shall present results that challenge these interpretations. First, we employ water-soluble chitosans that induce larger effects on zwitterionic phospholipids, namely dipalmitoyl phosphatidyl ethalonamine (DPPE) and dipalmitoyl phosphatidyl choline (DPPC), than on negatively charged dipalmitoyl phosphatidyl glycerol (DPPG). Slightly stronger effects are induced on the lipid extract of Escherichia coli (E. coli), except when compared to DPPE on acetate buffer. Even more relevant is the effect induced on monolayers prepared with a ternary mixture of DPPC, cholesterol (Chol) and sphingomyelin (SM) (SM-DPPC-Chol), which represents lipid rafts, for which effects appear at chitosan concentrations that are orders of magnitude smaller than reported in the literature for other chitosans or types of monolayer. The differences from the literature may be attributed to the high acetylation degree of one of the chitosans used, named Ch35% as it has a 35% acetylation degree. The charge in Ch35% was not sufficient for the electrostatic interactions to predominate over the hydrophobic interactions. The importance of charge availability for such interactions was confirmed by the larger monolayer expansion induced by Ch15%, a chitosan with 15% acetylation degree. Because both chitosans were water soluble, experiments could be made with subphases at physiological pH and at an acidic pH. Ch35% tend to have larger effects on monolayers deposited on the acidic pH, with a few exceptions when the larger volume occupied by the chitosan at a high pH led to larges expansions. Surprisingly, Ch15% induced larger effects on physiologic pH when incorporated in E. coli lipids, and this remains an open point. Also worth mentioning is that Ch35% and Ch15% have high molecular weights, ca. 106 g mol1, and still produced stronger effects than low molecular weight chitosans in previous studies, again contradicting expectations from the literature. In one hand, the larger effects induced on lipid rafts than on E. coli lipid extract calls for caution in the possible use of chitosans as bactericide agent; on the other hand, we observed a significant effect of Ch35% on monolayers of lipopolysaccharides (LPS), which represent the external wall of Gram-negative bacteria. Taken together, the results presented here indicate that charge availability and distribution in chitosans are probably the most important factor for their interaction with Langmuir monolayers, and the findings related to physiological pH and lipid rafts require a thorough revisit of studies on cell membrane models.Monocamadas lipídicas são sistemas conhecidos por mimetizarem membranas celulares, sendo usadas em uma variedade de estudos envolvendo moléculas que afetam a estrutura da membrana. Sabe-se que a incorporação de quitosanas em monocamadas lipídicas causa expansão e, em sua maioria, fluidização, com efeitos mais fortes em monocamadas carregadas negativamente e com quitosanas de baixa massa molar. Esses efeitos são atribuídos a interações eletrostáticas e hidrofóbicas, correlacionando bem com interações mais fortes com a parede celular negativa de bactérias do que com membranas de mamíferos. Nesta tese, apresentaremos resultados que desafiam essas interpretações. Primeiramente, empregamos quitosanas solúveis em água que induzem efeitos maiores nos fosfolipídios zwiteriônicos dipalmitoil etanolamina (DPPE) e dipalmitoil fosfatidilcolina (DPPC) do que no aniônico dipalmitoil fosfatidilglicerol (DPPG). Efeitos levemente maiores são induzidos no extrato lipídico de E. coli, exceto quando comparado com DPPE em tampão acetato. Mais relevante ainda é o efeito induzido em monocamadas compostas pela mistura ternária de DPPC, colesterol (Chol) e esfingomielina (SM) (SM-DPPC-Chol), que representa as jangadas lipídicas, para as quais aparecem efeitos com concentrações de quitosana que são ordens de magnitude do que reportado na literatura para outras quitosanas ou outros tipos de monocamada. As diferenças com a literatura podem ser atribuídas ao alto grau de acetilação de uma das quitosanas usadas, chamada de Ch35% por ter um grau de acetilação de 35%. A carga da Ch35% não foi suficiente para interações eletrostáticas predominarem sobre as hidrofóbicas. A importância da disponibilidade e da disposição de cargas para tais interações foi confirmada pela maior expansão das monocamadas induzida pela Ch15%, uma quitosana com grau de acetilação de 15%. Como ambas as quitosanas são solúveis em água, os experimentos puderam ser feitos em pHs fisiológico e ácido. A Ch35% tende a produzir efeitos maiores em monocamadas depositadas em pH ácido, salvas algumas exceções quando o volume ocupado pela quitosana em um pH alto levou a expansões maiores. Surpreendentemente, a Ch15% induziu efeitos maiores em pH fisiológico quando com lipídios de E. coli, e esse ponto ainda está em aberto. Mencione-se que a Ch35% e a Ch15% têm alta massa molar, cerca de 106 g mol1, e ainda produzem efeitos maiores em que quitosanas de baixa massa molar em estudos anteriores, novamente contradizendo expectativas da literatura. Por um lado, os efeitos induzidos em jangadas lipídicas maiores do que no extrato de E. coli sugerem cautela no uso de quitosanas como agentes bactericidas; por outro, um efeito significativo foi observado em monocamadas de lipopolissacarídeos (LPS), que representam a membrana externa de bactérias Gram-negativas. Somados, os resultados apresentados aqui indicam que a disponibilidade e a disposição de cargas nas quitosanas são provavelmente o aspecto mais importante para a sua interação em monocamadas de Langmuir, e as descobertas relacionadas ao pH fisiológico e às jangadas lipídicas apontam para a necessidade de uma detalhada reanálise dos estudos em membranas celulares.Biblioteca Digitais de Teses e Dissertações da USPOliveira Junior, Osvaldo Novais deJochelavicius, Karen2022-12-08info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfhttps://www.teses.usp.br/teses/disponiveis/76/76133/tde-31012023-154306/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesseng2024-08-23T16:05:02Zoai:teses.usp.br:tde-31012023-154306Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212024-08-23T16:05:02Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false
dc.title.none.fl_str_mv Effects caused by water-soluble chitosans with high molecular weight in bacterial and mammal membrane models using Langmuir monolayers
Efeitos causados por quitosanas solúveis em água e de alta massa molar em modelos de membrana de mamíferos e bactérias, usando monocamadas de Langmuir.
title Effects caused by water-soluble chitosans with high molecular weight in bacterial and mammal membrane models using Langmuir monolayers
spellingShingle Effects caused by water-soluble chitosans with high molecular weight in bacterial and mammal membrane models using Langmuir monolayers
Jochelavicius, Karen
Atividade bactericida
Bactericide activity
Chitosan
Langmuir monolayers
Monocamadas de Langmuir
Quitosana
title_short Effects caused by water-soluble chitosans with high molecular weight in bacterial and mammal membrane models using Langmuir monolayers
title_full Effects caused by water-soluble chitosans with high molecular weight in bacterial and mammal membrane models using Langmuir monolayers
title_fullStr Effects caused by water-soluble chitosans with high molecular weight in bacterial and mammal membrane models using Langmuir monolayers
title_full_unstemmed Effects caused by water-soluble chitosans with high molecular weight in bacterial and mammal membrane models using Langmuir monolayers
title_sort Effects caused by water-soluble chitosans with high molecular weight in bacterial and mammal membrane models using Langmuir monolayers
author Jochelavicius, Karen
author_facet Jochelavicius, Karen
author_role author
dc.contributor.none.fl_str_mv Oliveira Junior, Osvaldo Novais de
dc.contributor.author.fl_str_mv Jochelavicius, Karen
dc.subject.por.fl_str_mv Atividade bactericida
Bactericide activity
Chitosan
Langmuir monolayers
Monocamadas de Langmuir
Quitosana
topic Atividade bactericida
Bactericide activity
Chitosan
Langmuir monolayers
Monocamadas de Langmuir
Quitosana
description Lipid monolayers are well-known systems that mimic cell membrane environments, being used in a variety of studies involving molecules that affect the membrane structure. Incorporation of chitosans into lipid monolayers is known to cause expansion and, mostly, fluidization, having stronger effects on negatively charged monolayers and with low molecular weight chitosans. These effects are attributed to a combination of electrostatic and hydrophobic interactions, correlating well with the stronger interactions with the negatively charged bacterial cell membranes than for mammalian membranes. In this thesis, we shall present results that challenge these interpretations. First, we employ water-soluble chitosans that induce larger effects on zwitterionic phospholipids, namely dipalmitoyl phosphatidyl ethalonamine (DPPE) and dipalmitoyl phosphatidyl choline (DPPC), than on negatively charged dipalmitoyl phosphatidyl glycerol (DPPG). Slightly stronger effects are induced on the lipid extract of Escherichia coli (E. coli), except when compared to DPPE on acetate buffer. Even more relevant is the effect induced on monolayers prepared with a ternary mixture of DPPC, cholesterol (Chol) and sphingomyelin (SM) (SM-DPPC-Chol), which represents lipid rafts, for which effects appear at chitosan concentrations that are orders of magnitude smaller than reported in the literature for other chitosans or types of monolayer. The differences from the literature may be attributed to the high acetylation degree of one of the chitosans used, named Ch35% as it has a 35% acetylation degree. The charge in Ch35% was not sufficient for the electrostatic interactions to predominate over the hydrophobic interactions. The importance of charge availability for such interactions was confirmed by the larger monolayer expansion induced by Ch15%, a chitosan with 15% acetylation degree. Because both chitosans were water soluble, experiments could be made with subphases at physiological pH and at an acidic pH. Ch35% tend to have larger effects on monolayers deposited on the acidic pH, with a few exceptions when the larger volume occupied by the chitosan at a high pH led to larges expansions. Surprisingly, Ch15% induced larger effects on physiologic pH when incorporated in E. coli lipids, and this remains an open point. Also worth mentioning is that Ch35% and Ch15% have high molecular weights, ca. 106 g mol1, and still produced stronger effects than low molecular weight chitosans in previous studies, again contradicting expectations from the literature. In one hand, the larger effects induced on lipid rafts than on E. coli lipid extract calls for caution in the possible use of chitosans as bactericide agent; on the other hand, we observed a significant effect of Ch35% on monolayers of lipopolysaccharides (LPS), which represent the external wall of Gram-negative bacteria. Taken together, the results presented here indicate that charge availability and distribution in chitosans are probably the most important factor for their interaction with Langmuir monolayers, and the findings related to physiological pH and lipid rafts require a thorough revisit of studies on cell membrane models.
publishDate 2022
dc.date.none.fl_str_mv 2022-12-08
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://www.teses.usp.br/teses/disponiveis/76/76133/tde-31012023-154306/
url https://www.teses.usp.br/teses/disponiveis/76/76133/tde-31012023-154306/
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv
dc.rights.driver.fl_str_mv Liberar o conteúdo para acesso público.
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Liberar o conteúdo para acesso público.
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.coverage.none.fl_str_mv
dc.publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
dc.source.none.fl_str_mv
reponame:Biblioteca Digital de Teses e Dissertações da USP
instname:Universidade de São Paulo (USP)
instacron:USP
instname_str Universidade de São Paulo (USP)
instacron_str USP
institution USP
reponame_str Biblioteca Digital de Teses e Dissertações da USP
collection Biblioteca Digital de Teses e Dissertações da USP
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)
repository.mail.fl_str_mv virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br
_version_ 1815257477603655680