The compactification of the two dimensional monomial map
Autor(a) principal: | |
---|---|
Data de Publicação: | 2023 |
Tipo de documento: | Tese |
Idioma: | eng |
Título da fonte: | Biblioteca Digital de Teses e Dissertações da USP |
Texto Completo: | https://www.teses.usp.br/teses/disponiveis/45/45131/tde-09102023-230758/ |
Resumo: | Given a matrix = ( & \\\\ & ) in 2(), we can define its associated monomial map _ ^2 ^2 as follows: _ (,) = (^ ^,^ ^ ) . In the open set (^)^2, _ is biholomorphic and its dynamics are well known (Bonnot et al., 2018). However, as discussed by Favre, 2003, the dynamics can also be extended to ^2 through toric geometry compactification. This method, while precise, can be somewhat technical. Our goal is to provide a simpler, alternative approach to the compactification problem that achieves the same results as Favre. We will use the Stern-Brocot Blow-ups technique, similar to the one proposed by J. Hubbard and P. Papadopol, 2000 and 2008, to construct a compact space _ , containing (^)^2 as a dense subset, such that _ extends to a map _ _M _M as a dynamic system. We hope this method offers a more intuitive and straightforward perspective on the problem. |
id |
USP_509757b69204194dff07a2045e1666ca |
---|---|
oai_identifier_str |
oai:teses.usp.br:tde-09102023-230758 |
network_acronym_str |
USP |
network_name_str |
Biblioteca Digital de Teses e Dissertações da USP |
repository_id_str |
2721 |
spelling |
The compactification of the two dimensional monomial mapCompactificação do mapa monomial de duas dimensõesBlow-upsBlow-upsCompactificaçãoCompactificationContinued fractionsFrações contínuasMapa monomialMonomial mapGiven a matrix = ( & \\\\ & ) in 2(), we can define its associated monomial map _ ^2 ^2 as follows: _ (,) = (^ ^,^ ^ ) . In the open set (^)^2, _ is biholomorphic and its dynamics are well known (Bonnot et al., 2018). However, as discussed by Favre, 2003, the dynamics can also be extended to ^2 through toric geometry compactification. This method, while precise, can be somewhat technical. Our goal is to provide a simpler, alternative approach to the compactification problem that achieves the same results as Favre. We will use the Stern-Brocot Blow-ups technique, similar to the one proposed by J. Hubbard and P. Papadopol, 2000 and 2008, to construct a compact space _ , containing (^)^2 as a dense subset, such that _ extends to a map _ _M _M as a dynamic system. We hope this method offers a more intuitive and straightforward perspective on the problem.Dada uma matriz = ( & \\\\ & ) em _2(), podemos definir o mapa monomial associado _ ^2 ^2 por: _ (x,y) = (^ ^, ^ ^ ) . No aberto (^)^2, o mapa _ é um biholomorfismo e sua dinâmica é bem conhecida Bonnot et al., 2018. No entanto, como discutido por Favre, 2003, essa dinâmica também pode ser estendida para ^2 através da compactificação toroidal. Esse método, apesar de preciso, pode ser bastante técnico. Nosso objetivo é providenciar uma abordagem alternativa e simplificada ao problema de compactificação, que provê os mesmos resultados de Favre. Usaremos a técnica dos blow-ups de Stern-Brocot, que é similar a proposta por J. Hubbard e P. Papadopol, 2000 and 2008, para construir um espaço compacto _ , que contém (^)^2 como um subconjunto denso, e tal que _ se estende a uma aplicação _ _ _ como um sistema dinâmico. Esperamos que esse método ofereça uma perspectiva mais intuitiva e direta para a abordagem do problemaBiblioteca Digitais de Teses e Dissertações da USPFaria, Edson deSilva, Samanta Santos Avelino2023-08-09info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfhttps://www.teses.usp.br/teses/disponiveis/45/45131/tde-09102023-230758/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesseng2023-10-10T16:39:02Zoai:teses.usp.br:tde-09102023-230758Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212023-10-10T16:39:02Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false |
dc.title.none.fl_str_mv |
The compactification of the two dimensional monomial map Compactificação do mapa monomial de duas dimensões |
title |
The compactification of the two dimensional monomial map |
spellingShingle |
The compactification of the two dimensional monomial map Silva, Samanta Santos Avelino Blow-ups Blow-ups Compactificação Compactification Continued fractions Frações contínuas Mapa monomial Monomial map |
title_short |
The compactification of the two dimensional monomial map |
title_full |
The compactification of the two dimensional monomial map |
title_fullStr |
The compactification of the two dimensional monomial map |
title_full_unstemmed |
The compactification of the two dimensional monomial map |
title_sort |
The compactification of the two dimensional monomial map |
author |
Silva, Samanta Santos Avelino |
author_facet |
Silva, Samanta Santos Avelino |
author_role |
author |
dc.contributor.none.fl_str_mv |
Faria, Edson de |
dc.contributor.author.fl_str_mv |
Silva, Samanta Santos Avelino |
dc.subject.por.fl_str_mv |
Blow-ups Blow-ups Compactificação Compactification Continued fractions Frações contínuas Mapa monomial Monomial map |
topic |
Blow-ups Blow-ups Compactificação Compactification Continued fractions Frações contínuas Mapa monomial Monomial map |
description |
Given a matrix = ( & \\\\ & ) in 2(), we can define its associated monomial map _ ^2 ^2 as follows: _ (,) = (^ ^,^ ^ ) . In the open set (^)^2, _ is biholomorphic and its dynamics are well known (Bonnot et al., 2018). However, as discussed by Favre, 2003, the dynamics can also be extended to ^2 through toric geometry compactification. This method, while precise, can be somewhat technical. Our goal is to provide a simpler, alternative approach to the compactification problem that achieves the same results as Favre. We will use the Stern-Brocot Blow-ups technique, similar to the one proposed by J. Hubbard and P. Papadopol, 2000 and 2008, to construct a compact space _ , containing (^)^2 as a dense subset, such that _ extends to a map _ _M _M as a dynamic system. We hope this method offers a more intuitive and straightforward perspective on the problem. |
publishDate |
2023 |
dc.date.none.fl_str_mv |
2023-08-09 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
format |
doctoralThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://www.teses.usp.br/teses/disponiveis/45/45131/tde-09102023-230758/ |
url |
https://www.teses.usp.br/teses/disponiveis/45/45131/tde-09102023-230758/ |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
|
dc.rights.driver.fl_str_mv |
Liberar o conteúdo para acesso público. info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Liberar o conteúdo para acesso público. |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.coverage.none.fl_str_mv |
|
dc.publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações da USP instname:Universidade de São Paulo (USP) instacron:USP |
instname_str |
Universidade de São Paulo (USP) |
instacron_str |
USP |
institution |
USP |
reponame_str |
Biblioteca Digital de Teses e Dissertações da USP |
collection |
Biblioteca Digital de Teses e Dissertações da USP |
repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP) |
repository.mail.fl_str_mv |
virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br |
_version_ |
1815256843544428544 |