Métodos de kernel escaláveis e interpretáveis baseados em random Fourier features
Autor(a) principal: | |
---|---|
Data de Publicação: | 2023 |
Tipo de documento: | Dissertação |
Idioma: | por |
Título da fonte: | Biblioteca Digital de Teses e Dissertações da USP |
Texto Completo: | https://www.teses.usp.br/teses/disponiveis/104/104131/tde-02052023-084042/ |
Resumo: | Métodos de kernel são uma classe de modelos de aprendizado de máquina baseados em kernels positivo semidefinidos, que servem como medidas de similaridade entre covariáveis. Exemplos de métodos de kernel incluem a regressão ridge com kernels, as máquinas de vetor de suporte e os splines suavizadores. Apesar do seu amplo uso, os métodos de kernel possuem duas desvantagens significativas. Em primeiro lugar, ao operar sobre todos os pares de observações, eles demandam grande quantidade de memória e computação, o que impossibilita sua aplicação em grandes conjuntos de dados. Este problema pode ser resolvido através de aproximações da matriz do kernel via random Fourier features ou precondicionadores. Em segundo lugar, a maioria dos kernels tratam todas as covariáveis disponíveis como igualmente relevantes, desconsiderando seu impacto na predição. Isso resulta em um descréscimo na interpretabilidade, uma vez que a influência de covariáveis irrelevantes não é mitigada. Neste trabalho, nós estendemos a teoria de random Fourier features para os kernels com Determinação Automática de Relevância e propomos um novo método de kernel que integra a otimização dos parâmetros do kernel ao treinamento. Os parâmetros do kernel reduzem o efeito das covariáveis irrelevantes e podem ser utilizados para seleção de variáveis pós-processamento. O método proposto é avaliado em diversos conjuntos de dados e comparado a algoritmos convencionais de aprendizado de máquina. |
id |
USP_50bcc66e7ef01c382e3ce5dcbde5ef36 |
---|---|
oai_identifier_str |
oai:teses.usp.br:tde-02052023-084042 |
network_acronym_str |
USP |
network_name_str |
Biblioteca Digital de Teses e Dissertações da USP |
repository_id_str |
2721 |
spelling |
Métodos de kernel escaláveis e interpretáveis baseados em random Fourier featuresScalable and interpretable kernel methods based on random Fourier features.aprendizado de máquinafeature importanceimportância de covariáveisKernel methodsmachine learningMétodos de kerneloptimization.otimizaçãoMétodos de kernel são uma classe de modelos de aprendizado de máquina baseados em kernels positivo semidefinidos, que servem como medidas de similaridade entre covariáveis. Exemplos de métodos de kernel incluem a regressão ridge com kernels, as máquinas de vetor de suporte e os splines suavizadores. Apesar do seu amplo uso, os métodos de kernel possuem duas desvantagens significativas. Em primeiro lugar, ao operar sobre todos os pares de observações, eles demandam grande quantidade de memória e computação, o que impossibilita sua aplicação em grandes conjuntos de dados. Este problema pode ser resolvido através de aproximações da matriz do kernel via random Fourier features ou precondicionadores. Em segundo lugar, a maioria dos kernels tratam todas as covariáveis disponíveis como igualmente relevantes, desconsiderando seu impacto na predição. Isso resulta em um descréscimo na interpretabilidade, uma vez que a influência de covariáveis irrelevantes não é mitigada. Neste trabalho, nós estendemos a teoria de random Fourier features para os kernels com Determinação Automática de Relevância e propomos um novo método de kernel que integra a otimização dos parâmetros do kernel ao treinamento. Os parâmetros do kernel reduzem o efeito das covariáveis irrelevantes e podem ser utilizados para seleção de variáveis pós-processamento. O método proposto é avaliado em diversos conjuntos de dados e comparado a algoritmos convencionais de aprendizado de máquina.Kernel methods are a class of statistical machine learning models based on positive semidefinite kernels, which serve as a measure of similarity between data features. Examples of kernel methods include kernel ridge regression, support vector machines, and smoothing splines. Despite their widespread use, kernel methods face two main challenges. Firstly, due to operating on all pairs of observations, they require a large amount of memory and calculation, making them unsuitable for use with large datasets. This issue can be solved by approximating the kernel function via random Fourier features or preconditioners. Secondly, most used kernels consider all features to be equally relevant, without considering their actual impact on the prediction. This results in decreased interpretability, as the influence of irrelevant features is not mitigated. In this work, we extend the random Fourier features framework to Automatic Relevance Determination (ARD) kernels and proposes a new kernel method that integrates the optimization of kernel parameters during training. The kernel parameters reduce the effect of irrelevant features and might be used for post-processing variable selection. The proposed method is evaluated on several datasets and compared to conventional algorithms in machine learning.Biblioteca Digitais de Teses e Dissertações da USPIzbicki, RafaelOtto, Mateus Piovezan2023-03-29info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttps://www.teses.usp.br/teses/disponiveis/104/104131/tde-02052023-084042/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesspor2023-05-11T13:19:57Zoai:teses.usp.br:tde-02052023-084042Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212023-05-11T13:19:57Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false |
dc.title.none.fl_str_mv |
Métodos de kernel escaláveis e interpretáveis baseados em random Fourier features Scalable and interpretable kernel methods based on random Fourier features. |
title |
Métodos de kernel escaláveis e interpretáveis baseados em random Fourier features |
spellingShingle |
Métodos de kernel escaláveis e interpretáveis baseados em random Fourier features Otto, Mateus Piovezan aprendizado de máquina feature importance importância de covariáveis Kernel methods machine learning Métodos de kernel optimization. otimização |
title_short |
Métodos de kernel escaláveis e interpretáveis baseados em random Fourier features |
title_full |
Métodos de kernel escaláveis e interpretáveis baseados em random Fourier features |
title_fullStr |
Métodos de kernel escaláveis e interpretáveis baseados em random Fourier features |
title_full_unstemmed |
Métodos de kernel escaláveis e interpretáveis baseados em random Fourier features |
title_sort |
Métodos de kernel escaláveis e interpretáveis baseados em random Fourier features |
author |
Otto, Mateus Piovezan |
author_facet |
Otto, Mateus Piovezan |
author_role |
author |
dc.contributor.none.fl_str_mv |
Izbicki, Rafael |
dc.contributor.author.fl_str_mv |
Otto, Mateus Piovezan |
dc.subject.por.fl_str_mv |
aprendizado de máquina feature importance importância de covariáveis Kernel methods machine learning Métodos de kernel optimization. otimização |
topic |
aprendizado de máquina feature importance importância de covariáveis Kernel methods machine learning Métodos de kernel optimization. otimização |
description |
Métodos de kernel são uma classe de modelos de aprendizado de máquina baseados em kernels positivo semidefinidos, que servem como medidas de similaridade entre covariáveis. Exemplos de métodos de kernel incluem a regressão ridge com kernels, as máquinas de vetor de suporte e os splines suavizadores. Apesar do seu amplo uso, os métodos de kernel possuem duas desvantagens significativas. Em primeiro lugar, ao operar sobre todos os pares de observações, eles demandam grande quantidade de memória e computação, o que impossibilita sua aplicação em grandes conjuntos de dados. Este problema pode ser resolvido através de aproximações da matriz do kernel via random Fourier features ou precondicionadores. Em segundo lugar, a maioria dos kernels tratam todas as covariáveis disponíveis como igualmente relevantes, desconsiderando seu impacto na predição. Isso resulta em um descréscimo na interpretabilidade, uma vez que a influência de covariáveis irrelevantes não é mitigada. Neste trabalho, nós estendemos a teoria de random Fourier features para os kernels com Determinação Automática de Relevância e propomos um novo método de kernel que integra a otimização dos parâmetros do kernel ao treinamento. Os parâmetros do kernel reduzem o efeito das covariáveis irrelevantes e podem ser utilizados para seleção de variáveis pós-processamento. O método proposto é avaliado em diversos conjuntos de dados e comparado a algoritmos convencionais de aprendizado de máquina. |
publishDate |
2023 |
dc.date.none.fl_str_mv |
2023-03-29 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://www.teses.usp.br/teses/disponiveis/104/104131/tde-02052023-084042/ |
url |
https://www.teses.usp.br/teses/disponiveis/104/104131/tde-02052023-084042/ |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.relation.none.fl_str_mv |
|
dc.rights.driver.fl_str_mv |
Liberar o conteúdo para acesso público. info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Liberar o conteúdo para acesso público. |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.coverage.none.fl_str_mv |
|
dc.publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações da USP instname:Universidade de São Paulo (USP) instacron:USP |
instname_str |
Universidade de São Paulo (USP) |
instacron_str |
USP |
institution |
USP |
reponame_str |
Biblioteca Digital de Teses e Dissertações da USP |
collection |
Biblioteca Digital de Teses e Dissertações da USP |
repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP) |
repository.mail.fl_str_mv |
virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br |
_version_ |
1815256606426791936 |