Métodos de kernel escaláveis e interpretáveis baseados em random Fourier features

Detalhes bibliográficos
Autor(a) principal: Otto, Mateus Piovezan
Data de Publicação: 2023
Tipo de documento: Dissertação
Idioma: por
Título da fonte: Biblioteca Digital de Teses e Dissertações da USP
Texto Completo: https://www.teses.usp.br/teses/disponiveis/104/104131/tde-02052023-084042/
Resumo: Métodos de kernel são uma classe de modelos de aprendizado de máquina baseados em kernels positivo semidefinidos, que servem como medidas de similaridade entre covariáveis. Exemplos de métodos de kernel incluem a regressão ridge com kernels, as máquinas de vetor de suporte e os splines suavizadores. Apesar do seu amplo uso, os métodos de kernel possuem duas desvantagens significativas. Em primeiro lugar, ao operar sobre todos os pares de observações, eles demandam grande quantidade de memória e computação, o que impossibilita sua aplicação em grandes conjuntos de dados. Este problema pode ser resolvido através de aproximações da matriz do kernel via random Fourier features ou precondicionadores. Em segundo lugar, a maioria dos kernels tratam todas as covariáveis disponíveis como igualmente relevantes, desconsiderando seu impacto na predição. Isso resulta em um descréscimo na interpretabilidade, uma vez que a influência de covariáveis irrelevantes não é mitigada. Neste trabalho, nós estendemos a teoria de random Fourier features para os kernels com Determinação Automática de Relevância e propomos um novo método de kernel que integra a otimização dos parâmetros do kernel ao treinamento. Os parâmetros do kernel reduzem o efeito das covariáveis irrelevantes e podem ser utilizados para seleção de variáveis pós-processamento. O método proposto é avaliado em diversos conjuntos de dados e comparado a algoritmos convencionais de aprendizado de máquina.
id USP_50bcc66e7ef01c382e3ce5dcbde5ef36
oai_identifier_str oai:teses.usp.br:tde-02052023-084042
network_acronym_str USP
network_name_str Biblioteca Digital de Teses e Dissertações da USP
repository_id_str 2721
spelling Métodos de kernel escaláveis e interpretáveis baseados em random Fourier featuresScalable and interpretable kernel methods based on random Fourier features.aprendizado de máquinafeature importanceimportância de covariáveisKernel methodsmachine learningMétodos de kerneloptimization.otimizaçãoMétodos de kernel são uma classe de modelos de aprendizado de máquina baseados em kernels positivo semidefinidos, que servem como medidas de similaridade entre covariáveis. Exemplos de métodos de kernel incluem a regressão ridge com kernels, as máquinas de vetor de suporte e os splines suavizadores. Apesar do seu amplo uso, os métodos de kernel possuem duas desvantagens significativas. Em primeiro lugar, ao operar sobre todos os pares de observações, eles demandam grande quantidade de memória e computação, o que impossibilita sua aplicação em grandes conjuntos de dados. Este problema pode ser resolvido através de aproximações da matriz do kernel via random Fourier features ou precondicionadores. Em segundo lugar, a maioria dos kernels tratam todas as covariáveis disponíveis como igualmente relevantes, desconsiderando seu impacto na predição. Isso resulta em um descréscimo na interpretabilidade, uma vez que a influência de covariáveis irrelevantes não é mitigada. Neste trabalho, nós estendemos a teoria de random Fourier features para os kernels com Determinação Automática de Relevância e propomos um novo método de kernel que integra a otimização dos parâmetros do kernel ao treinamento. Os parâmetros do kernel reduzem o efeito das covariáveis irrelevantes e podem ser utilizados para seleção de variáveis pós-processamento. O método proposto é avaliado em diversos conjuntos de dados e comparado a algoritmos convencionais de aprendizado de máquina.Kernel methods are a class of statistical machine learning models based on positive semidefinite kernels, which serve as a measure of similarity between data features. Examples of kernel methods include kernel ridge regression, support vector machines, and smoothing splines. Despite their widespread use, kernel methods face two main challenges. Firstly, due to operating on all pairs of observations, they require a large amount of memory and calculation, making them unsuitable for use with large datasets. This issue can be solved by approximating the kernel function via random Fourier features or preconditioners. Secondly, most used kernels consider all features to be equally relevant, without considering their actual impact on the prediction. This results in decreased interpretability, as the influence of irrelevant features is not mitigated. In this work, we extend the random Fourier features framework to Automatic Relevance Determination (ARD) kernels and proposes a new kernel method that integrates the optimization of kernel parameters during training. The kernel parameters reduce the effect of irrelevant features and might be used for post-processing variable selection. The proposed method is evaluated on several datasets and compared to conventional algorithms in machine learning.Biblioteca Digitais de Teses e Dissertações da USPIzbicki, RafaelOtto, Mateus Piovezan2023-03-29info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttps://www.teses.usp.br/teses/disponiveis/104/104131/tde-02052023-084042/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesspor2023-05-11T13:19:57Zoai:teses.usp.br:tde-02052023-084042Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212023-05-11T13:19:57Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false
dc.title.none.fl_str_mv Métodos de kernel escaláveis e interpretáveis baseados em random Fourier features
Scalable and interpretable kernel methods based on random Fourier features.
title Métodos de kernel escaláveis e interpretáveis baseados em random Fourier features
spellingShingle Métodos de kernel escaláveis e interpretáveis baseados em random Fourier features
Otto, Mateus Piovezan
aprendizado de máquina
feature importance
importância de covariáveis
Kernel methods
machine learning
Métodos de kernel
optimization.
otimização
title_short Métodos de kernel escaláveis e interpretáveis baseados em random Fourier features
title_full Métodos de kernel escaláveis e interpretáveis baseados em random Fourier features
title_fullStr Métodos de kernel escaláveis e interpretáveis baseados em random Fourier features
title_full_unstemmed Métodos de kernel escaláveis e interpretáveis baseados em random Fourier features
title_sort Métodos de kernel escaláveis e interpretáveis baseados em random Fourier features
author Otto, Mateus Piovezan
author_facet Otto, Mateus Piovezan
author_role author
dc.contributor.none.fl_str_mv Izbicki, Rafael
dc.contributor.author.fl_str_mv Otto, Mateus Piovezan
dc.subject.por.fl_str_mv aprendizado de máquina
feature importance
importância de covariáveis
Kernel methods
machine learning
Métodos de kernel
optimization.
otimização
topic aprendizado de máquina
feature importance
importância de covariáveis
Kernel methods
machine learning
Métodos de kernel
optimization.
otimização
description Métodos de kernel são uma classe de modelos de aprendizado de máquina baseados em kernels positivo semidefinidos, que servem como medidas de similaridade entre covariáveis. Exemplos de métodos de kernel incluem a regressão ridge com kernels, as máquinas de vetor de suporte e os splines suavizadores. Apesar do seu amplo uso, os métodos de kernel possuem duas desvantagens significativas. Em primeiro lugar, ao operar sobre todos os pares de observações, eles demandam grande quantidade de memória e computação, o que impossibilita sua aplicação em grandes conjuntos de dados. Este problema pode ser resolvido através de aproximações da matriz do kernel via random Fourier features ou precondicionadores. Em segundo lugar, a maioria dos kernels tratam todas as covariáveis disponíveis como igualmente relevantes, desconsiderando seu impacto na predição. Isso resulta em um descréscimo na interpretabilidade, uma vez que a influência de covariáveis irrelevantes não é mitigada. Neste trabalho, nós estendemos a teoria de random Fourier features para os kernels com Determinação Automática de Relevância e propomos um novo método de kernel que integra a otimização dos parâmetros do kernel ao treinamento. Os parâmetros do kernel reduzem o efeito das covariáveis irrelevantes e podem ser utilizados para seleção de variáveis pós-processamento. O método proposto é avaliado em diversos conjuntos de dados e comparado a algoritmos convencionais de aprendizado de máquina.
publishDate 2023
dc.date.none.fl_str_mv 2023-03-29
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://www.teses.usp.br/teses/disponiveis/104/104131/tde-02052023-084042/
url https://www.teses.usp.br/teses/disponiveis/104/104131/tde-02052023-084042/
dc.language.iso.fl_str_mv por
language por
dc.relation.none.fl_str_mv
dc.rights.driver.fl_str_mv Liberar o conteúdo para acesso público.
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Liberar o conteúdo para acesso público.
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.coverage.none.fl_str_mv
dc.publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
dc.source.none.fl_str_mv
reponame:Biblioteca Digital de Teses e Dissertações da USP
instname:Universidade de São Paulo (USP)
instacron:USP
instname_str Universidade de São Paulo (USP)
instacron_str USP
institution USP
reponame_str Biblioteca Digital de Teses e Dissertações da USP
collection Biblioteca Digital de Teses e Dissertações da USP
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)
repository.mail.fl_str_mv virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br
_version_ 1815256606426791936