Potenciais, modulares e novas soluções em mecânica quântica supersimétrica

Detalhes bibliográficos
Autor(a) principal: Negrini Neto, Osvaldo
Data de Publicação: 2014
Tipo de documento: Tese
Idioma: por
Título da fonte: Biblioteca Digital de Teses e Dissertações da USP
Texto Completo: http://www.teses.usp.br/teses/disponiveis/43/43134/tde-03112014-121822/
Resumo: Neste trabalho estudamos uma nova classe de superpotenciais em mecânica quântica supersimétrica, os quais denominamos de modulares, por serem funções do módulo da coordenada x. O superpotencial de partida proposto é da forma x |x|. Esta ideia permite tornar solúvel exatamente, a energia zero, um incontável número de potenciais gerados por estas funções no âmbito da mecânica quântica supersimétrica. Exploramos algumas aplicações para estes superpotenciais, com ênfase para uma representação da molécula de amônia supersimétrica e, em particular, mostramos que um sistema muito estudado na literatura, gerado pelo superpotencial x 1/x, pode ser resolvido mais facilmente recorrendo-se à representação modular. Procuramos estudar as soluções exatas ou aproximadas - do espectro de energias dos Hamiltonianos parceiros supersimétricos utilizando metodologias adequadas ao respectivo caso, incluindo-se o conhecido potencial x4, sendo que o método variacional de coeficientes de funções foi o que melhor se adaptou ao estudo. Este método, pouco utilizado até o momento na literatura, permitiu não apenas resolver com excelente aproximação os primeiros níveis do sistema em estudo, como também comprovou a supersimetria do sistema modular. Mostramos também que em sistemas quânticos supersimétricos, a equação de Schroedinger pode ser colocada na forma da equação de Sturm-Liouville e apresentar soluções de polinômios ortogonais, sendo que a função-peso de tais polinômios é gerada pelo superpotencial. Uma breve abordagem da simetria PT envolvendo diretamente o potencial por nós proposto também foi investigada, e mostramos que o sistema é equivalente a um Hamiltoniano não Hermitiano com potencial V(z) = (z4).
id USP_51335319e5f7a0a42b7d02d9a7aa8e30
oai_identifier_str oai:teses.usp.br:tde-03112014-121822
network_acronym_str USP
network_name_str Biblioteca Digital de Teses e Dissertações da USP
repository_id_str 2721
spelling Potenciais, modulares e novas soluções em mecânica quântica supersimétricaModular potentials and new solutions in supersymmetric quantum mechanicsMecânica quânticaPotenciaisPotentialsQuantum mechanicsSupersimentriaSupersymetryNeste trabalho estudamos uma nova classe de superpotenciais em mecânica quântica supersimétrica, os quais denominamos de modulares, por serem funções do módulo da coordenada x. O superpotencial de partida proposto é da forma x |x|. Esta ideia permite tornar solúvel exatamente, a energia zero, um incontável número de potenciais gerados por estas funções no âmbito da mecânica quântica supersimétrica. Exploramos algumas aplicações para estes superpotenciais, com ênfase para uma representação da molécula de amônia supersimétrica e, em particular, mostramos que um sistema muito estudado na literatura, gerado pelo superpotencial x 1/x, pode ser resolvido mais facilmente recorrendo-se à representação modular. Procuramos estudar as soluções exatas ou aproximadas - do espectro de energias dos Hamiltonianos parceiros supersimétricos utilizando metodologias adequadas ao respectivo caso, incluindo-se o conhecido potencial x4, sendo que o método variacional de coeficientes de funções foi o que melhor se adaptou ao estudo. Este método, pouco utilizado até o momento na literatura, permitiu não apenas resolver com excelente aproximação os primeiros níveis do sistema em estudo, como também comprovou a supersimetria do sistema modular. Mostramos também que em sistemas quânticos supersimétricos, a equação de Schroedinger pode ser colocada na forma da equação de Sturm-Liouville e apresentar soluções de polinômios ortogonais, sendo que a função-peso de tais polinômios é gerada pelo superpotencial. Uma breve abordagem da simetria PT envolvendo diretamente o potencial por nós proposto também foi investigada, e mostramos que o sistema é equivalente a um Hamiltoniano não Hermitiano com potencial V(z) = (z4).In this work we study a new class of superpotentials in supersymmetric quantum mechanics, which we call modular because of their dependence on the modulus of the x coordinate. The starting superpotential is of the form x |x|. This idea helps make exactly solvable, at zero energy, several potentials generated by these functions in the context of supersymmetric quantum mechanics. We explore some applications for these superpotenciais, with emphasis on a representation of the supersymmetric ammonia molecule and, in particular, we show that a system generated by the superpotential x-1/x, widely studied in the literature, can be solved more easily making use to the modular representation. We also seek for spectral solutions exact or approximated - of the partners Hamiltonians based on the exact ground state wave function of zero energy including the conventional x4 potential. The use of the variational method of functions coefficients. These methods, rarely used to date in the literature, allowed not only solve with excellent approximation the first levels of the system under study, but also proved the supersymmetry of the modular system. The results were compared with others found in the literature. We also show that for supersymmetric quantum systems, the Schroedinger equation can be put in a form of the Sturm-Liouville equation, and so, orthogonal polynomials solutions can be find through a weight-function generated by the superpotential. A brief overview of the PTsymmetry of the system directly involving a modular model proposed was also investigated, and we show that this system is equivalent to the non-Hermitian Hamiltonian one with potential V (z) = z4.Biblioteca Digitais de Teses e Dissertações da USPSilva, Adilson Jose daNegrini Neto, Osvaldo2014-04-09info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfhttp://www.teses.usp.br/teses/disponiveis/43/43134/tde-03112014-121822/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesspor2016-07-28T16:11:55Zoai:teses.usp.br:tde-03112014-121822Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212016-07-28T16:11:55Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false
dc.title.none.fl_str_mv Potenciais, modulares e novas soluções em mecânica quântica supersimétrica
Modular potentials and new solutions in supersymmetric quantum mechanics
title Potenciais, modulares e novas soluções em mecânica quântica supersimétrica
spellingShingle Potenciais, modulares e novas soluções em mecânica quântica supersimétrica
Negrini Neto, Osvaldo
Mecânica quântica
Potenciais
Potentials
Quantum mechanics
Supersimentria
Supersymetry
title_short Potenciais, modulares e novas soluções em mecânica quântica supersimétrica
title_full Potenciais, modulares e novas soluções em mecânica quântica supersimétrica
title_fullStr Potenciais, modulares e novas soluções em mecânica quântica supersimétrica
title_full_unstemmed Potenciais, modulares e novas soluções em mecânica quântica supersimétrica
title_sort Potenciais, modulares e novas soluções em mecânica quântica supersimétrica
author Negrini Neto, Osvaldo
author_facet Negrini Neto, Osvaldo
author_role author
dc.contributor.none.fl_str_mv Silva, Adilson Jose da
dc.contributor.author.fl_str_mv Negrini Neto, Osvaldo
dc.subject.por.fl_str_mv Mecânica quântica
Potenciais
Potentials
Quantum mechanics
Supersimentria
Supersymetry
topic Mecânica quântica
Potenciais
Potentials
Quantum mechanics
Supersimentria
Supersymetry
description Neste trabalho estudamos uma nova classe de superpotenciais em mecânica quântica supersimétrica, os quais denominamos de modulares, por serem funções do módulo da coordenada x. O superpotencial de partida proposto é da forma x |x|. Esta ideia permite tornar solúvel exatamente, a energia zero, um incontável número de potenciais gerados por estas funções no âmbito da mecânica quântica supersimétrica. Exploramos algumas aplicações para estes superpotenciais, com ênfase para uma representação da molécula de amônia supersimétrica e, em particular, mostramos que um sistema muito estudado na literatura, gerado pelo superpotencial x 1/x, pode ser resolvido mais facilmente recorrendo-se à representação modular. Procuramos estudar as soluções exatas ou aproximadas - do espectro de energias dos Hamiltonianos parceiros supersimétricos utilizando metodologias adequadas ao respectivo caso, incluindo-se o conhecido potencial x4, sendo que o método variacional de coeficientes de funções foi o que melhor se adaptou ao estudo. Este método, pouco utilizado até o momento na literatura, permitiu não apenas resolver com excelente aproximação os primeiros níveis do sistema em estudo, como também comprovou a supersimetria do sistema modular. Mostramos também que em sistemas quânticos supersimétricos, a equação de Schroedinger pode ser colocada na forma da equação de Sturm-Liouville e apresentar soluções de polinômios ortogonais, sendo que a função-peso de tais polinômios é gerada pelo superpotencial. Uma breve abordagem da simetria PT envolvendo diretamente o potencial por nós proposto também foi investigada, e mostramos que o sistema é equivalente a um Hamiltoniano não Hermitiano com potencial V(z) = (z4).
publishDate 2014
dc.date.none.fl_str_mv 2014-04-09
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://www.teses.usp.br/teses/disponiveis/43/43134/tde-03112014-121822/
url http://www.teses.usp.br/teses/disponiveis/43/43134/tde-03112014-121822/
dc.language.iso.fl_str_mv por
language por
dc.relation.none.fl_str_mv
dc.rights.driver.fl_str_mv Liberar o conteúdo para acesso público.
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Liberar o conteúdo para acesso público.
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.coverage.none.fl_str_mv
dc.publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
dc.source.none.fl_str_mv
reponame:Biblioteca Digital de Teses e Dissertações da USP
instname:Universidade de São Paulo (USP)
instacron:USP
instname_str Universidade de São Paulo (USP)
instacron_str USP
institution USP
reponame_str Biblioteca Digital de Teses e Dissertações da USP
collection Biblioteca Digital de Teses e Dissertações da USP
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)
repository.mail.fl_str_mv virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br
_version_ 1815256703040487424