The primary roots of Sorghum bicolor as a model to study the mechanisms related to mixed-linkage glucan hydrolysis during the aerenchyma development
Autor(a) principal: | |
---|---|
Data de Publicação: | 2021 |
Tipo de documento: | Tese |
Idioma: | eng |
Título da fonte: | Biblioteca Digital de Teses e Dissertações da USP |
Texto Completo: | https://www.teses.usp.br/teses/disponiveis/11/11151/tde-17062021-164845/ |
Resumo: | Sorghum bicolor is one of the most important worldwide cereal crops due to its high carbon fixation efficiency, nitrogen acquisition, great adaptability to grow in distinct environments, and, above all, used as a staple food in Africa and Asia. Sorghum germplasm collection, quality of sequenced genome, and recent advances on genetic transformation have set this species as an up-and-coming model among C4 grasses. Sorghum, like all grasses, is made up of type II cell wall, whose main feature is the significant amounts of arabinoxylan and mixed-linkage (1,3;1,4)-β-D- glucan (MLG) polysaccharides. MLG is a D-glucose hemicellulosic polymer whose linear chain holds mainly β-(1,4) glycosidic linkages intercalated with little β-(1,3) glycosidic linkages that kink the chain turning it into a more water-soluble polymer. As a result, MLG chemical properties are attractive for biotechnology then understanding MLG synthesis and hydrolysis are essential topics. \"Lichenases,\" technically known as endo-β-D-(1,3;1,4)-glucanases, specifically hydrolyze β(1,3)-linkages that are immediately followed by β(1,4) ones. They are enzymes encoded by endo-(1,3;1,4)-β-D-glucanases genes of the glycosyl hydrolases family 17 (GH17). By contrast, MLG synthases are associated with the cellulose synthase-like F, H, and J. Recent studies with sugarcane roots have shown a strong correlation between a gradual increase in the level of endo-β-D-(1,3;1,4)-glucanases genes and proteins as aerenchyma develops into gas spaces. As in sugarcane and rice, sorghum has constitutive lysigenous aerenchyma and owns a diploid sequenced genome, differing from the complex sugarcane genome that hinders robust phylogenetic inferences. Thus, we used sorghum\'s primary roots for characterizing more in-depth molecular mechanisms involving MLG hydrolysis and aerenchyma formation. A non-branching seven-day-old primary root of sorghum allows a detailed anatomical characterization using the X-Ray microtomography technique. We divided the root into three segments (S1, S2, and S3), in which S1 has no aerenchyma, S2 is the aerenchyma initiation, and S3 a more advanced stage of aerenchyma development. Inferences indicated GH17 endo-(1,3;1,4)-β-D-glucanases utterly Poaceae-specific, family in which sorghum has three \"lichenases\" (Sblic1, Sblic2, and Sblic3) and rice two (OsEgl1 and OsEgl2). However, real-time PCR revealed differential expression solely for Sblic1, which increased tenfold from S1 to S3. Enzymatic assays with crude extracts detected an increase in endo-(1,3;1,4)-β-D-glucanases activities (S1<S2). Concomitantly, cell wall fractioning showed a decline in the relative quantity of MLG (S1>S2). To verify if a knockout at endo-(1,3; 1,4)-β-D-glucanases would compromise gas spaces development, we decided to use the CRISPR-editing tool on rice genes (OsEgl1 and OsEgl2). Our decision took into consideration the high stability for rice genetic transformation, funding time, and, above all, the mastery of rice tissue culture at Rutgers, The State University of New Jersey. OsEgl1 and OsEgl2 have shown to be expressed in roots. Both candidate genes were targeted by gRNAs, which were cloned into the rice CRISPR psgR-Cas9-Os module. Subsequently, the cassettes were subcloned into plant transformation pCAMBIA1300 vector that was used in biolistic. We transformed rice calli and submitted transformants to hygromycin selection medium. Genotyping of plants showed the presence of Cas9, although no on-target mutation has been detected by RFLP analysis, T7E1 assays, and Sanger sequencing. Notably, we acquired a T-DNA line for OsEgl2, which might be valuable transgenic material for MLG hydrolysis\' studies for an eventual loss-of- function mutation in OsEgl2. Therefore, it would aggregate significant information to our findings, leading us to assert whether MLG hydrolysis is directly involved in gas space formation. Ultimately, the higher expression of Sblic1, increase in endo-(1,3; 1,4)-β-D-glucanases activity, and decrease of relative MLG quantity are intercorrelated and, thus, we conclude that MLG is degraded in roots and possibly associated with aerenchyma formation. Lastly, we emphasize that sorghum\'s primary roots are a promising model for MLG studies and aerenchyma development. |
id |
USP_52e773058ead85236a1a5fa755eac3d0 |
---|---|
oai_identifier_str |
oai:teses.usp.br:tde-17062021-164845 |
network_acronym_str |
USP |
network_name_str |
Biblioteca Digital de Teses e Dissertações da USP |
repository_id_str |
2721 |
spelling |
The primary roots of Sorghum bicolor as a model to study the mechanisms related to mixed-linkage glucan hydrolysis during the aerenchyma developmentRaízes primárias de Sorghum bicolor como modelo para os estudos dos mecanismos relacionados à hidrólise do glucano de ligação mista durante o desenvolvimento do aerênquimaβ-D-(1,3;1,4)-endo-glucanasesβ-D-(1,3;1,4)-glucano de ligaçãoβ-glucanβ-glucanoβ-glucano de ligação mista(1,3),(1,4)- β-D-glucano de ligação mistaAerenchymaAerênquimaArrozCellulose synthases-like F H and JCelulose sintases-like F H e JEndo-(1,3;1,4)-β-D-glucanasesGlicosil hidrolases 16 e 17 15Glucanases de ligação mistaGlucano de ligação mistaGlycosyl hydrolysis 16 and 17 15LichenanLichenaseLiquenanoLiquenaseMixed-linkage β-glucanMixed-linkage (1,3),(1,4)-β-D-glucanMixed-linkage (1,3;1,4)-β-D-glucanMixed-linkage glucanMixed-linkage glucanasesPrimary rootsRaízes primáriasRiceSorghumSorgoSorghum bicolor is one of the most important worldwide cereal crops due to its high carbon fixation efficiency, nitrogen acquisition, great adaptability to grow in distinct environments, and, above all, used as a staple food in Africa and Asia. Sorghum germplasm collection, quality of sequenced genome, and recent advances on genetic transformation have set this species as an up-and-coming model among C4 grasses. Sorghum, like all grasses, is made up of type II cell wall, whose main feature is the significant amounts of arabinoxylan and mixed-linkage (1,3;1,4)-β-D- glucan (MLG) polysaccharides. MLG is a D-glucose hemicellulosic polymer whose linear chain holds mainly β-(1,4) glycosidic linkages intercalated with little β-(1,3) glycosidic linkages that kink the chain turning it into a more water-soluble polymer. As a result, MLG chemical properties are attractive for biotechnology then understanding MLG synthesis and hydrolysis are essential topics. \"Lichenases,\" technically known as endo-β-D-(1,3;1,4)-glucanases, specifically hydrolyze β(1,3)-linkages that are immediately followed by β(1,4) ones. They are enzymes encoded by endo-(1,3;1,4)-β-D-glucanases genes of the glycosyl hydrolases family 17 (GH17). By contrast, MLG synthases are associated with the cellulose synthase-like F, H, and J. Recent studies with sugarcane roots have shown a strong correlation between a gradual increase in the level of endo-β-D-(1,3;1,4)-glucanases genes and proteins as aerenchyma develops into gas spaces. As in sugarcane and rice, sorghum has constitutive lysigenous aerenchyma and owns a diploid sequenced genome, differing from the complex sugarcane genome that hinders robust phylogenetic inferences. Thus, we used sorghum\'s primary roots for characterizing more in-depth molecular mechanisms involving MLG hydrolysis and aerenchyma formation. A non-branching seven-day-old primary root of sorghum allows a detailed anatomical characterization using the X-Ray microtomography technique. We divided the root into three segments (S1, S2, and S3), in which S1 has no aerenchyma, S2 is the aerenchyma initiation, and S3 a more advanced stage of aerenchyma development. Inferences indicated GH17 endo-(1,3;1,4)-β-D-glucanases utterly Poaceae-specific, family in which sorghum has three \"lichenases\" (Sblic1, Sblic2, and Sblic3) and rice two (OsEgl1 and OsEgl2). However, real-time PCR revealed differential expression solely for Sblic1, which increased tenfold from S1 to S3. Enzymatic assays with crude extracts detected an increase in endo-(1,3;1,4)-β-D-glucanases activities (S1<S2). Concomitantly, cell wall fractioning showed a decline in the relative quantity of MLG (S1>S2). To verify if a knockout at endo-(1,3; 1,4)-β-D-glucanases would compromise gas spaces development, we decided to use the CRISPR-editing tool on rice genes (OsEgl1 and OsEgl2). Our decision took into consideration the high stability for rice genetic transformation, funding time, and, above all, the mastery of rice tissue culture at Rutgers, The State University of New Jersey. OsEgl1 and OsEgl2 have shown to be expressed in roots. Both candidate genes were targeted by gRNAs, which were cloned into the rice CRISPR psgR-Cas9-Os module. Subsequently, the cassettes were subcloned into plant transformation pCAMBIA1300 vector that was used in biolistic. We transformed rice calli and submitted transformants to hygromycin selection medium. Genotyping of plants showed the presence of Cas9, although no on-target mutation has been detected by RFLP analysis, T7E1 assays, and Sanger sequencing. Notably, we acquired a T-DNA line for OsEgl2, which might be valuable transgenic material for MLG hydrolysis\' studies for an eventual loss-of- function mutation in OsEgl2. Therefore, it would aggregate significant information to our findings, leading us to assert whether MLG hydrolysis is directly involved in gas space formation. Ultimately, the higher expression of Sblic1, increase in endo-(1,3; 1,4)-β-D-glucanases activity, and decrease of relative MLG quantity are intercorrelated and, thus, we conclude that MLG is degraded in roots and possibly associated with aerenchyma formation. Lastly, we emphasize that sorghum\'s primary roots are a promising model for MLG studies and aerenchyma development.Sorghum bicolor é uma das culturas cerealíferas mais importantes do mundo devido à sua alta eficiência de fixação de carbono, aquisição de nitrogênio, grande adaptabilidade ao cultivo em ambientes distintos e, acima de tudo, utilização como alimento básico na África e na Ásia. A coleção de germoplasma de sorgo, a qualidade do genoma sequenciado e os avanços recentes na transformação genética também colocaram esta espécie como um modelo promissor entre as gramíneas C4. O sorgo, como todas as gramíneas, é constituído de parede celular do tipo II, cuja principal característica são as quantidades significativas dos polissacarídeos arabinoxilanos e β- D-(1,3;1,4)-glucanos de ligação mista (GLM). O GLM é um polímero hemicelulósico de D-glicose cuja cadeia linear contém principalmente ligações glicosídicas β-(1,4) intercaladas com poucas ligações glicosídicas β-(1,3) que torcem a cadeia, transformando-a em um polímero mais hidrossolúvel. Como resultado, as propriedades químicas do GLM são atrativas para a biotecnologia e, então, a compreensão da síntese e hidrólise de GLM são importantes tópicos. As \"liquenases\", tecnicamente conhecidas como endo-β-D-(1,3;1,4)-glucanases, hidrolisam especificamente as ligações β (1,3) que são imediatamente seguidas pelas β (1,4). Elas são enzimas codificadas pelos genes das endo-(1,3;1,4)- β-D-glucanases da família das glicosil hidrolases 17 (GH17). Estudos recentes com raízes de cana-de-açúcar têm mostrado uma forte correlação entre um aumento gradual no nível de genes e proteínas de endo-β-D-(1,3;1,4)-glucanases à medida que o aerênquima se desenvolve em espaços gasosos. Assim como na cana-de-açúcar e no arroz, o sorgo tem aerênquima lisígeno constitutivo, embora possua genoma diploide sequenciado, diferindo do complexo genoma da cana-de-açúcar que dificulta inferências filogenéticas robustas. Assim, para uma compreensão molecular mais aprofundada em relação à hidrólise de GLM e formação de aerênquima, utilizamos raízes primárias de sorgo. A raiz primária de sorgo com sete dias não está ramificada e, por conseguinte, permite uma caracterização anatômica detalhada e rápida pela técnica de microtomografia de raios-X. Dividimos a raiz em três segmentos (S1, S2 e S3), em que S1 não tem aerênquima, S2 é a iniciação do aerênquima e S3 é um estágio mais avançado no desenvolvimento do aerênquima. Inferências indicaram as GH17 endo-(1,3;1,4)- β-D-glucanases totalmente exclusivas de Poaceae, família em que o sorgo possui três \"liquenases\" (Sblic1, Sblic2 e Sblic3) e arroz duas (OsEgl1 e OsEgl2). Todavia, a PCR em tempo real revelou expressão diferencial somente para Sblic1, o qual aumentou dez vezes de S1 para S3. Ensaios enzimáticos com extratos brutos detectaram um aumento na atividade das endo-(1,3;1,4)- β-D-glucanases (S1<S2). Concomitantemente, o fracionamento da parede celular mostrou um declínio na quantidade relativa para GLM (S1> S2). Para verificar se um nocaute nas endo-(1,3;1,4)- β-D-glucanases comprometeria o desenvolvimento dos espaços gasosos, decidimos usar a ferramenta de edição CRISPR nos genes do arroz (OsEgl1 e OsEgl2). Nossa decisão levou em consideração a alta estabilidade para a transformação genética do arroz, o tempo de financiamento e, especialmente, o domínio da cultura de tecido de arroz em Rutgers, The State University of New Jersey. OsEgl1 e OsEgl2 mostraram ser expressas nas raízes. Ambos os genes candidatos foram alvos de gRNAs, os quais foram clonados no módulo de CRISPR para arroz psgR-Cas9-Os. Subsequentemente, os cassetes foram subclonados no vetor de transformação de plantas pCAMBIA1300 que foi usado na biobalística. Transformamos calos de arroz e submetemos os transformantes ao meio de seleção com higromicina. A genotipagem de plantas mostrou a presença de Cas9, embora nenhuma mutação específica tenha sido detectada por análises de RFLP, ensaios de T7E1 e sequenciamento Sanger. Notadamente, adquirimos uma linhagem de T-DNA para OsEgl2, a qual pode ser um valioso material transgênico para os estudos de hidrólise de GLM em uma eventual mutação de perda de função em OsEgl2. Portanto, ela agregaria informações significativas às nossas descobertas, levando-nos a afirmar se a hidrólise de GLM está diretamente envolvida na formação dos espaços gasosos. Em suma, a maior expressão de Sblic1, o aumento da atividade enzimática de endo-(1,3;1,4)- β-D-glucanases e a diminuição da quantidade relativa de GLM estão intercorrelacionados e, por conseguinte, concluímos que o GLM é degradado nas raízes e possivelmente associado à formação de aerênquima. Por último, enfatizamos que as raízes primárias do sorgo é um modelo promissor para estudos de GLM e o desenvolvimento de aerênquima.Biblioteca Digitais de Teses e Dissertações da USPBuckeridge, Marcos SilveiraTeixeira, Bruno Rubens Flausino2021-05-14info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfhttps://www.teses.usp.br/teses/disponiveis/11/11151/tde-17062021-164845/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesseng2021-06-21T20:51:03Zoai:teses.usp.br:tde-17062021-164845Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212021-06-21T20:51:03Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false |
dc.title.none.fl_str_mv |
The primary roots of Sorghum bicolor as a model to study the mechanisms related to mixed-linkage glucan hydrolysis during the aerenchyma development Raízes primárias de Sorghum bicolor como modelo para os estudos dos mecanismos relacionados à hidrólise do glucano de ligação mista durante o desenvolvimento do aerênquima |
title |
The primary roots of Sorghum bicolor as a model to study the mechanisms related to mixed-linkage glucan hydrolysis during the aerenchyma development |
spellingShingle |
The primary roots of Sorghum bicolor as a model to study the mechanisms related to mixed-linkage glucan hydrolysis during the aerenchyma development Teixeira, Bruno Rubens Flausino β-D-(1,3;1,4)-endo-glucanases β-D-(1,3;1,4)-glucano de ligação β-glucan β-glucano β-glucano de ligação mista (1,3),(1,4)- β-D-glucano de ligação mista Aerenchyma Aerênquima Arroz Cellulose synthases-like F H and J Celulose sintases-like F H e J Endo-(1,3;1,4)-β-D-glucanases Glicosil hidrolases 16 e 17 15 Glucanases de ligação mista Glucano de ligação mista Glycosyl hydrolysis 16 and 17 15 Lichenan Lichenase Liquenano Liquenase Mixed-linkage β-glucan Mixed-linkage (1,3),(1,4)-β-D-glucan Mixed-linkage (1,3;1,4)-β-D-glucan Mixed-linkage glucan Mixed-linkage glucanases Primary roots Raízes primárias Rice Sorghum Sorgo |
title_short |
The primary roots of Sorghum bicolor as a model to study the mechanisms related to mixed-linkage glucan hydrolysis during the aerenchyma development |
title_full |
The primary roots of Sorghum bicolor as a model to study the mechanisms related to mixed-linkage glucan hydrolysis during the aerenchyma development |
title_fullStr |
The primary roots of Sorghum bicolor as a model to study the mechanisms related to mixed-linkage glucan hydrolysis during the aerenchyma development |
title_full_unstemmed |
The primary roots of Sorghum bicolor as a model to study the mechanisms related to mixed-linkage glucan hydrolysis during the aerenchyma development |
title_sort |
The primary roots of Sorghum bicolor as a model to study the mechanisms related to mixed-linkage glucan hydrolysis during the aerenchyma development |
author |
Teixeira, Bruno Rubens Flausino |
author_facet |
Teixeira, Bruno Rubens Flausino |
author_role |
author |
dc.contributor.none.fl_str_mv |
Buckeridge, Marcos Silveira |
dc.contributor.author.fl_str_mv |
Teixeira, Bruno Rubens Flausino |
dc.subject.por.fl_str_mv |
β-D-(1,3;1,4)-endo-glucanases β-D-(1,3;1,4)-glucano de ligação β-glucan β-glucano β-glucano de ligação mista (1,3),(1,4)- β-D-glucano de ligação mista Aerenchyma Aerênquima Arroz Cellulose synthases-like F H and J Celulose sintases-like F H e J Endo-(1,3;1,4)-β-D-glucanases Glicosil hidrolases 16 e 17 15 Glucanases de ligação mista Glucano de ligação mista Glycosyl hydrolysis 16 and 17 15 Lichenan Lichenase Liquenano Liquenase Mixed-linkage β-glucan Mixed-linkage (1,3),(1,4)-β-D-glucan Mixed-linkage (1,3;1,4)-β-D-glucan Mixed-linkage glucan Mixed-linkage glucanases Primary roots Raízes primárias Rice Sorghum Sorgo |
topic |
β-D-(1,3;1,4)-endo-glucanases β-D-(1,3;1,4)-glucano de ligação β-glucan β-glucano β-glucano de ligação mista (1,3),(1,4)- β-D-glucano de ligação mista Aerenchyma Aerênquima Arroz Cellulose synthases-like F H and J Celulose sintases-like F H e J Endo-(1,3;1,4)-β-D-glucanases Glicosil hidrolases 16 e 17 15 Glucanases de ligação mista Glucano de ligação mista Glycosyl hydrolysis 16 and 17 15 Lichenan Lichenase Liquenano Liquenase Mixed-linkage β-glucan Mixed-linkage (1,3),(1,4)-β-D-glucan Mixed-linkage (1,3;1,4)-β-D-glucan Mixed-linkage glucan Mixed-linkage glucanases Primary roots Raízes primárias Rice Sorghum Sorgo |
description |
Sorghum bicolor is one of the most important worldwide cereal crops due to its high carbon fixation efficiency, nitrogen acquisition, great adaptability to grow in distinct environments, and, above all, used as a staple food in Africa and Asia. Sorghum germplasm collection, quality of sequenced genome, and recent advances on genetic transformation have set this species as an up-and-coming model among C4 grasses. Sorghum, like all grasses, is made up of type II cell wall, whose main feature is the significant amounts of arabinoxylan and mixed-linkage (1,3;1,4)-β-D- glucan (MLG) polysaccharides. MLG is a D-glucose hemicellulosic polymer whose linear chain holds mainly β-(1,4) glycosidic linkages intercalated with little β-(1,3) glycosidic linkages that kink the chain turning it into a more water-soluble polymer. As a result, MLG chemical properties are attractive for biotechnology then understanding MLG synthesis and hydrolysis are essential topics. \"Lichenases,\" technically known as endo-β-D-(1,3;1,4)-glucanases, specifically hydrolyze β(1,3)-linkages that are immediately followed by β(1,4) ones. They are enzymes encoded by endo-(1,3;1,4)-β-D-glucanases genes of the glycosyl hydrolases family 17 (GH17). By contrast, MLG synthases are associated with the cellulose synthase-like F, H, and J. Recent studies with sugarcane roots have shown a strong correlation between a gradual increase in the level of endo-β-D-(1,3;1,4)-glucanases genes and proteins as aerenchyma develops into gas spaces. As in sugarcane and rice, sorghum has constitutive lysigenous aerenchyma and owns a diploid sequenced genome, differing from the complex sugarcane genome that hinders robust phylogenetic inferences. Thus, we used sorghum\'s primary roots for characterizing more in-depth molecular mechanisms involving MLG hydrolysis and aerenchyma formation. A non-branching seven-day-old primary root of sorghum allows a detailed anatomical characterization using the X-Ray microtomography technique. We divided the root into three segments (S1, S2, and S3), in which S1 has no aerenchyma, S2 is the aerenchyma initiation, and S3 a more advanced stage of aerenchyma development. Inferences indicated GH17 endo-(1,3;1,4)-β-D-glucanases utterly Poaceae-specific, family in which sorghum has three \"lichenases\" (Sblic1, Sblic2, and Sblic3) and rice two (OsEgl1 and OsEgl2). However, real-time PCR revealed differential expression solely for Sblic1, which increased tenfold from S1 to S3. Enzymatic assays with crude extracts detected an increase in endo-(1,3;1,4)-β-D-glucanases activities (S1<S2). Concomitantly, cell wall fractioning showed a decline in the relative quantity of MLG (S1>S2). To verify if a knockout at endo-(1,3; 1,4)-β-D-glucanases would compromise gas spaces development, we decided to use the CRISPR-editing tool on rice genes (OsEgl1 and OsEgl2). Our decision took into consideration the high stability for rice genetic transformation, funding time, and, above all, the mastery of rice tissue culture at Rutgers, The State University of New Jersey. OsEgl1 and OsEgl2 have shown to be expressed in roots. Both candidate genes were targeted by gRNAs, which were cloned into the rice CRISPR psgR-Cas9-Os module. Subsequently, the cassettes were subcloned into plant transformation pCAMBIA1300 vector that was used in biolistic. We transformed rice calli and submitted transformants to hygromycin selection medium. Genotyping of plants showed the presence of Cas9, although no on-target mutation has been detected by RFLP analysis, T7E1 assays, and Sanger sequencing. Notably, we acquired a T-DNA line for OsEgl2, which might be valuable transgenic material for MLG hydrolysis\' studies for an eventual loss-of- function mutation in OsEgl2. Therefore, it would aggregate significant information to our findings, leading us to assert whether MLG hydrolysis is directly involved in gas space formation. Ultimately, the higher expression of Sblic1, increase in endo-(1,3; 1,4)-β-D-glucanases activity, and decrease of relative MLG quantity are intercorrelated and, thus, we conclude that MLG is degraded in roots and possibly associated with aerenchyma formation. Lastly, we emphasize that sorghum\'s primary roots are a promising model for MLG studies and aerenchyma development. |
publishDate |
2021 |
dc.date.none.fl_str_mv |
2021-05-14 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
format |
doctoralThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://www.teses.usp.br/teses/disponiveis/11/11151/tde-17062021-164845/ |
url |
https://www.teses.usp.br/teses/disponiveis/11/11151/tde-17062021-164845/ |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
|
dc.rights.driver.fl_str_mv |
Liberar o conteúdo para acesso público. info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Liberar o conteúdo para acesso público. |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.coverage.none.fl_str_mv |
|
dc.publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações da USP instname:Universidade de São Paulo (USP) instacron:USP |
instname_str |
Universidade de São Paulo (USP) |
instacron_str |
USP |
institution |
USP |
reponame_str |
Biblioteca Digital de Teses e Dissertações da USP |
collection |
Biblioteca Digital de Teses e Dissertações da USP |
repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP) |
repository.mail.fl_str_mv |
virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br |
_version_ |
1815257040653647872 |