Computational methods in Biology: cancer biomarkers, protein networks and lateral gene transfer

Detalhes bibliográficos
Autor(a) principal: Heberle, Henry
Data de Publicação: 2019
Tipo de documento: Tese
Idioma: eng
Título da fonte: Biblioteca Digital de Teses e Dissertações da USP
Texto Completo: http://www.teses.usp.br/teses/disponiveis/55/55134/tde-15102019-145225/
Resumo: Molecular Biology is a branch within Science of great importance. Despite the fact it studies microscopic entities, the volume and complexity of information are great. The applications are varied and can be of global interest, such as the spread of antibiotic resistance genes among bacteria and new methods for diagnostic and prognostic of cancer. By understanding biomolecular mechanisms, scientists can define treatments for diseases, support the decisions made by patients, identify the influence of intestinal microbiota over physical and psychological conditions, find cause and source of microbial antibiotic resistance, among many other applications. Computer Science plays key roles in this context, such as enabling complex data analyzes by specialists, creating models that simulate biological structures and processes, and by providing algorithms for extracting information encoded in biological data. During my doctorate, we explored those mechanisms in three main levels: quantification of proteins from cells, analysis of interactions that happen inside cells, and the comparison of genomes and their genetic history. This manuscript reports different projects, four of them already published in scientific journals. They comprise the discovery of candidate proteins for cancer biomarkers, the visual analysis of protein-protein interaction networks and the visual analysis of lateral gene transfer in bacterial phylogenetic trees. Here, we explain these projects and the main findings associated with the use of computational methods. Among the results are the evaluation of stability of ranking and signature methods applied to discovery proteomics data, a new approach to select candidate proteins from discovery to targeted proteomics, lists of candidate biomarkers for oral cancer, and new techniques for the visualization of biological networks and phylogenetic supertrees.
id USP_54755e6ebc4b26d99b5de29707d08310
oai_identifier_str oai:teses.usp.br:tde-15102019-145225
network_acronym_str USP
network_name_str Biblioteca Digital de Teses e Dissertações da USP
repository_id_str 2721
spelling Computational methods in Biology: cancer biomarkers, protein networks and lateral gene transferMétodos computacionais em Biologia: biomarcadores de câncer, redes de proteínas e transmissão lateral de genesBiological network VisualizationBiomarcadores de câncerCancer biomarkerLateral gene transferPriorização de proteínas, Visualização de redes biológicasProtein prioritizationTransmição Lateral de geneTree visualizationVisualização de árvoresMolecular Biology is a branch within Science of great importance. Despite the fact it studies microscopic entities, the volume and complexity of information are great. The applications are varied and can be of global interest, such as the spread of antibiotic resistance genes among bacteria and new methods for diagnostic and prognostic of cancer. By understanding biomolecular mechanisms, scientists can define treatments for diseases, support the decisions made by patients, identify the influence of intestinal microbiota over physical and psychological conditions, find cause and source of microbial antibiotic resistance, among many other applications. Computer Science plays key roles in this context, such as enabling complex data analyzes by specialists, creating models that simulate biological structures and processes, and by providing algorithms for extracting information encoded in biological data. During my doctorate, we explored those mechanisms in three main levels: quantification of proteins from cells, analysis of interactions that happen inside cells, and the comparison of genomes and their genetic history. This manuscript reports different projects, four of them already published in scientific journals. They comprise the discovery of candidate proteins for cancer biomarkers, the visual analysis of protein-protein interaction networks and the visual analysis of lateral gene transfer in bacterial phylogenetic trees. Here, we explain these projects and the main findings associated with the use of computational methods. Among the results are the evaluation of stability of ranking and signature methods applied to discovery proteomics data, a new approach to select candidate proteins from discovery to targeted proteomics, lists of candidate biomarkers for oral cancer, and new techniques for the visualization of biological networks and phylogenetic supertrees.A Biologia Molecular é um ramo da Ciência de grande importância. Apesar de estudar entidades microscópicas, o volume e a complexidade das informações são imensos. Suas aplicações são variadas e podem ser de interesse global, como a disseminação de genes de resistência a antibióticos entre bactérias e novos métodos para diagnóstico e prognóstico de câncer. Entendendo os mecanismos biomoleculares, cientistas podem definir tratamentos para doenças, apoiar as decisões tomadas pelos pacientes, identificar a influência da microbiota intestinal sobre as condições físicas e psicológicas, encontrar causas e fontes de resistência microbiana aos antibióticos, entre muitas outras aplicações. A Ciência da Computação desempenha papéis-chave nesse contexto, como permitir análises complexas de dados por especialistas, criar modelos que simulam estruturas e processos biológicos e fornecer algoritmos para extrair informações codificadas em dados biológicos. Durante meu doutorado, exploramos esses mecanismos em três níveis principais: quantificação de proteínas a partir de células, análise de interações que ocorrem dentro das células e comparação de genomas e seus históricos. Este manuscrito relata diferentes projetos, quatro deles já publicados em revistas científicas. Eles compreendem a descoberta de proteínas candidatas a biomarcadores de câncer, a análise visual de redes de interação proteína-proteína e a análise visual da transferência lateral de genes em árvores filogenéticas bacterianas. Aqui, explicamos esses projetos e as principais descobertas associadas ao uso de métodos computacionais. Entre os resultados estão a avaliação da estabilidade dos métodos de ranqueamento e assinaturas aplicados aos dados proteômicos de descoberta, uma nova abordagem para selecionar proteínas candidatas desde a descoberta até proteômica direcionada, listas de candidatos a biomarcadores para câncer oral e novas técnicas para a visualização de redes biológicas e supertrees filogenéticas.Biblioteca Digitais de Teses e Dissertações da USPMinghim, RosaneHeberle, Henry2019-02-28info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfhttp://www.teses.usp.br/teses/disponiveis/55/55134/tde-15102019-145225/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesseng2019-11-08T21:26:56Zoai:teses.usp.br:tde-15102019-145225Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212019-11-08T21:26:56Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false
dc.title.none.fl_str_mv Computational methods in Biology: cancer biomarkers, protein networks and lateral gene transfer
Métodos computacionais em Biologia: biomarcadores de câncer, redes de proteínas e transmissão lateral de genes
title Computational methods in Biology: cancer biomarkers, protein networks and lateral gene transfer
spellingShingle Computational methods in Biology: cancer biomarkers, protein networks and lateral gene transfer
Heberle, Henry
Biological network Visualization
Biomarcadores de câncer
Cancer biomarker
Lateral gene transfer
Priorização de proteínas, Visualização de redes biológicas
Protein prioritization
Transmição Lateral de gene
Tree visualization
Visualização de árvores
title_short Computational methods in Biology: cancer biomarkers, protein networks and lateral gene transfer
title_full Computational methods in Biology: cancer biomarkers, protein networks and lateral gene transfer
title_fullStr Computational methods in Biology: cancer biomarkers, protein networks and lateral gene transfer
title_full_unstemmed Computational methods in Biology: cancer biomarkers, protein networks and lateral gene transfer
title_sort Computational methods in Biology: cancer biomarkers, protein networks and lateral gene transfer
author Heberle, Henry
author_facet Heberle, Henry
author_role author
dc.contributor.none.fl_str_mv Minghim, Rosane
dc.contributor.author.fl_str_mv Heberle, Henry
dc.subject.por.fl_str_mv Biological network Visualization
Biomarcadores de câncer
Cancer biomarker
Lateral gene transfer
Priorização de proteínas, Visualização de redes biológicas
Protein prioritization
Transmição Lateral de gene
Tree visualization
Visualização de árvores
topic Biological network Visualization
Biomarcadores de câncer
Cancer biomarker
Lateral gene transfer
Priorização de proteínas, Visualização de redes biológicas
Protein prioritization
Transmição Lateral de gene
Tree visualization
Visualização de árvores
description Molecular Biology is a branch within Science of great importance. Despite the fact it studies microscopic entities, the volume and complexity of information are great. The applications are varied and can be of global interest, such as the spread of antibiotic resistance genes among bacteria and new methods for diagnostic and prognostic of cancer. By understanding biomolecular mechanisms, scientists can define treatments for diseases, support the decisions made by patients, identify the influence of intestinal microbiota over physical and psychological conditions, find cause and source of microbial antibiotic resistance, among many other applications. Computer Science plays key roles in this context, such as enabling complex data analyzes by specialists, creating models that simulate biological structures and processes, and by providing algorithms for extracting information encoded in biological data. During my doctorate, we explored those mechanisms in three main levels: quantification of proteins from cells, analysis of interactions that happen inside cells, and the comparison of genomes and their genetic history. This manuscript reports different projects, four of them already published in scientific journals. They comprise the discovery of candidate proteins for cancer biomarkers, the visual analysis of protein-protein interaction networks and the visual analysis of lateral gene transfer in bacterial phylogenetic trees. Here, we explain these projects and the main findings associated with the use of computational methods. Among the results are the evaluation of stability of ranking and signature methods applied to discovery proteomics data, a new approach to select candidate proteins from discovery to targeted proteomics, lists of candidate biomarkers for oral cancer, and new techniques for the visualization of biological networks and phylogenetic supertrees.
publishDate 2019
dc.date.none.fl_str_mv 2019-02-28
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://www.teses.usp.br/teses/disponiveis/55/55134/tde-15102019-145225/
url http://www.teses.usp.br/teses/disponiveis/55/55134/tde-15102019-145225/
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv
dc.rights.driver.fl_str_mv Liberar o conteúdo para acesso público.
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Liberar o conteúdo para acesso público.
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.coverage.none.fl_str_mv
dc.publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
dc.source.none.fl_str_mv
reponame:Biblioteca Digital de Teses e Dissertações da USP
instname:Universidade de São Paulo (USP)
instacron:USP
instname_str Universidade de São Paulo (USP)
instacron_str USP
institution USP
reponame_str Biblioteca Digital de Teses e Dissertações da USP
collection Biblioteca Digital de Teses e Dissertações da USP
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)
repository.mail.fl_str_mv virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br
_version_ 1815257033218195456