Sistema de produção Neuro-Fuzzy em tempo real para a ITAIPU Binacional

Detalhes bibliográficos
Autor(a) principal: Arnauts, Teresinha
Data de Publicação: 2001
Tipo de documento: Dissertação
Idioma: por
Título da fonte: Biblioteca Digital de Teses e Dissertações da USP
Texto Completo: http://www.teses.usp.br/teses/disponiveis/55/55134/tde-24012018-110431/
Resumo: Nos últimos anos, tem-se dado grande enfoque à resolução de problemas utilizando-se redes neurais artificiais, principalmente devido às suas características de aprendizado e adaptação, generalização, processamento paralelo e distribuído, etc... Pesquisadores também têm proposto o desenvolvimento de sistemas híbridos, que consiste na união de mais de um paradigma, por exemplo, redes neurais, sistemas especialistas e sistemas fuzzy, num mesmo sistema, provendo uma solução melhor para um determinado problema. Neste trabalho, uma técnica para a modelagem de sistemas de produção através dos paradigmas conexionista e fuzzj está sendo proposta. Um sistema de produção neuro. fuzzy, que utiliza esta técnica para a detecção e previsão de falhas na Hidrelétrica de Itaipu, foi desenvolvido. Este sistema, chamado de Sistema de Produção NEUFI (NETJro Fuzzy para a Itaipu), permite a rápida tomada de decisões em emergências e melhor monitoração do sistema Itaipu em situações normais. Para este propósito, uma base de conhecimento baseada em regras, já em uso na operação da Usina pelo sistema R-TESE (Real Time Expert System Environment), foi utilizada como referência inicial. Além disso um simulador, denominado Simulador Neuro-Fuzzj, foi também desenvolvido para facilitar a modelagem das regras. A abordagem proposta, quando comparada com o sistema R-TESE, tem as seguintes vantagens. Primeiro, a incorporação de técnicas de redes neurais dá ao sistema NEUFI maior flexibilidade e fácil manutenção. Segundo, possibilidade de visualizar às regras através de estruturas neurais. Outra vantagem é a redução do número de regras devido a similaridade de algumas delas, que têm seu conhecimento implicitamente representado durante o treinamento da rede.
id USP_551c770f1127144e57ef59b4c3488573
oai_identifier_str oai:teses.usp.br:tde-24012018-110431
network_acronym_str USP
network_name_str Biblioteca Digital de Teses e Dissertações da USP
repository_id_str 2721
spelling Sistema de produção Neuro-Fuzzy em tempo real para a ITAIPU BinacionalNot availableNão disponívelNot availableNos últimos anos, tem-se dado grande enfoque à resolução de problemas utilizando-se redes neurais artificiais, principalmente devido às suas características de aprendizado e adaptação, generalização, processamento paralelo e distribuído, etc... Pesquisadores também têm proposto o desenvolvimento de sistemas híbridos, que consiste na união de mais de um paradigma, por exemplo, redes neurais, sistemas especialistas e sistemas fuzzy, num mesmo sistema, provendo uma solução melhor para um determinado problema. Neste trabalho, uma técnica para a modelagem de sistemas de produção através dos paradigmas conexionista e fuzzj está sendo proposta. Um sistema de produção neuro. fuzzy, que utiliza esta técnica para a detecção e previsão de falhas na Hidrelétrica de Itaipu, foi desenvolvido. Este sistema, chamado de Sistema de Produção NEUFI (NETJro Fuzzy para a Itaipu), permite a rápida tomada de decisões em emergências e melhor monitoração do sistema Itaipu em situações normais. Para este propósito, uma base de conhecimento baseada em regras, já em uso na operação da Usina pelo sistema R-TESE (Real Time Expert System Environment), foi utilizada como referência inicial. Além disso um simulador, denominado Simulador Neuro-Fuzzj, foi também desenvolvido para facilitar a modelagem das regras. A abordagem proposta, quando comparada com o sistema R-TESE, tem as seguintes vantagens. Primeiro, a incorporação de técnicas de redes neurais dá ao sistema NEUFI maior flexibilidade e fácil manutenção. Segundo, possibilidade de visualizar às regras através de estruturas neurais. Outra vantagem é a redução do número de regras devido a similaridade de algumas delas, que têm seu conhecimento implicitamente representado durante o treinamento da rede.In the last years, neural networks have been widely used for solving problems, mainly due to their learning, adaptation, generalization, paraliel and distributed processing characteristics. in addition, researchers have proposed the developrnent of hybrid systems which consist in the combination of more than one paradigm, for example, neural networks, expert systems and fuzzy systems in the sarne system, providing a better solution for the problem given. In this work, a technique for modeling of production systems by using connectionist and fuzzy paradigms has been proposed. A neuro-fu7zy production system, that uses this tecbnique, for fault detection and prediction in the, Itaipu Hydroelectric, has been developed. This system, called by NEUFI Production System (NEUro Fuzzy for Iltaipu), aliows a faster rnaking decision in emergencies and improves the itaipu System monitoring in normal situations. For this purpose, rule-based knowledge already in use on Itaipu operation by system R-TESE (Real Time Expert System Environment) has been taken as initial reference. Furthermore, a simulator entitled Neuro-Fuzzy Simulator has also been developed for the rnodeling of the mies to be easier. The proposed approach when compared with the system R-TESE has the following advantages. First, the incorporation of neural network techniques in NEUFI provides the system more flexibility and easier rnaintenance. Second, it allows to take a view of the rules through neural networks. Another improvement is the reduction of the number of rules, dueto the similarity of some rules, which have their knowledge implicitly represented during the network training process.Biblioteca Digitais de Teses e Dissertações da USPRomero, Roseli Aparecida FrancelinArnauts, Teresinha2001-10-25info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://www.teses.usp.br/teses/disponiveis/55/55134/tde-24012018-110431/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesspor2018-07-19T20:50:39Zoai:teses.usp.br:tde-24012018-110431Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212018-07-19T20:50:39Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false
dc.title.none.fl_str_mv Sistema de produção Neuro-Fuzzy em tempo real para a ITAIPU Binacional
Not available
title Sistema de produção Neuro-Fuzzy em tempo real para a ITAIPU Binacional
spellingShingle Sistema de produção Neuro-Fuzzy em tempo real para a ITAIPU Binacional
Arnauts, Teresinha
Não disponível
Not available
title_short Sistema de produção Neuro-Fuzzy em tempo real para a ITAIPU Binacional
title_full Sistema de produção Neuro-Fuzzy em tempo real para a ITAIPU Binacional
title_fullStr Sistema de produção Neuro-Fuzzy em tempo real para a ITAIPU Binacional
title_full_unstemmed Sistema de produção Neuro-Fuzzy em tempo real para a ITAIPU Binacional
title_sort Sistema de produção Neuro-Fuzzy em tempo real para a ITAIPU Binacional
author Arnauts, Teresinha
author_facet Arnauts, Teresinha
author_role author
dc.contributor.none.fl_str_mv Romero, Roseli Aparecida Francelin
dc.contributor.author.fl_str_mv Arnauts, Teresinha
dc.subject.por.fl_str_mv Não disponível
Not available
topic Não disponível
Not available
description Nos últimos anos, tem-se dado grande enfoque à resolução de problemas utilizando-se redes neurais artificiais, principalmente devido às suas características de aprendizado e adaptação, generalização, processamento paralelo e distribuído, etc... Pesquisadores também têm proposto o desenvolvimento de sistemas híbridos, que consiste na união de mais de um paradigma, por exemplo, redes neurais, sistemas especialistas e sistemas fuzzy, num mesmo sistema, provendo uma solução melhor para um determinado problema. Neste trabalho, uma técnica para a modelagem de sistemas de produção através dos paradigmas conexionista e fuzzj está sendo proposta. Um sistema de produção neuro. fuzzy, que utiliza esta técnica para a detecção e previsão de falhas na Hidrelétrica de Itaipu, foi desenvolvido. Este sistema, chamado de Sistema de Produção NEUFI (NETJro Fuzzy para a Itaipu), permite a rápida tomada de decisões em emergências e melhor monitoração do sistema Itaipu em situações normais. Para este propósito, uma base de conhecimento baseada em regras, já em uso na operação da Usina pelo sistema R-TESE (Real Time Expert System Environment), foi utilizada como referência inicial. Além disso um simulador, denominado Simulador Neuro-Fuzzj, foi também desenvolvido para facilitar a modelagem das regras. A abordagem proposta, quando comparada com o sistema R-TESE, tem as seguintes vantagens. Primeiro, a incorporação de técnicas de redes neurais dá ao sistema NEUFI maior flexibilidade e fácil manutenção. Segundo, possibilidade de visualizar às regras através de estruturas neurais. Outra vantagem é a redução do número de regras devido a similaridade de algumas delas, que têm seu conhecimento implicitamente representado durante o treinamento da rede.
publishDate 2001
dc.date.none.fl_str_mv 2001-10-25
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://www.teses.usp.br/teses/disponiveis/55/55134/tde-24012018-110431/
url http://www.teses.usp.br/teses/disponiveis/55/55134/tde-24012018-110431/
dc.language.iso.fl_str_mv por
language por
dc.relation.none.fl_str_mv
dc.rights.driver.fl_str_mv Liberar o conteúdo para acesso público.
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Liberar o conteúdo para acesso público.
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.coverage.none.fl_str_mv
dc.publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
dc.source.none.fl_str_mv
reponame:Biblioteca Digital de Teses e Dissertações da USP
instname:Universidade de São Paulo (USP)
instacron:USP
instname_str Universidade de São Paulo (USP)
instacron_str USP
institution USP
reponame_str Biblioteca Digital de Teses e Dissertações da USP
collection Biblioteca Digital de Teses e Dissertações da USP
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)
repository.mail.fl_str_mv virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br
_version_ 1815257381668388864