Sistema de hardware reconfigurável para navegação visual de veículos autônomos

Detalhes bibliográficos
Autor(a) principal: Dias, Mauricio Acconcia
Data de Publicação: 2016
Tipo de documento: Tese
Idioma: por
Título da fonte: Biblioteca Digital de Teses e Dissertações da USP
Texto Completo: http://www.teses.usp.br/teses/disponiveis/55/55134/tde-13012017-164142/
Resumo: O número de acidentes veiculares têm aumentado mundialmente e a principal causa associada a estes acidentes é a falha humana. O desenvolvimento de veículos autônomos é uma área que ganhou destaque em vários grupos de pesquisa do mundo, e um dos principais objetivos é proporcionar um meio de evitar estes acidentes. Os sistemas de navegação utilizados nestes veículos precisam ser extremamente confiáveis e robustos o que exige o desenvolvimento de soluções específicas para solucionar o problema. Devido ao baixo custo e a riqueza de informações, um dos sensores mais utilizados para executar navegação autônoma (e nos sistemas de auxílio ao motorista) são as câmeras. Informações sobre o ambiente são extraídas por meio do processamento das imagens obtidas pela câmera, e em seguida são utilizadas pelo sistema de navegação. O objetivo principal desta tese consiste do projeto, implementação, teste e otimização de um comitê de Redes Neurais Artificiais utilizadas em Sistemas de Visão Computacional para Veículos Autônomos (considerando em específico o modelo proposto e desenvolvido no Laboratório de Robótica Móvel (LRM)), em hardware, buscando acelerar seu tempo de execução, para utilização como classificadores de imagens nos veículos autônomos desenvolvidos pelo grupo de pesquisa do LRM. Dentre as contribuições deste trabalho, as principais são: um hardware configurado em um FPGA que executa a propagação do sinal em um comitê de redes neurais artificiais de forma rápida com baixo consumo de energia, comparado a um computador de propósito geral; resultados práticos avaliando precisão, consumo de hardware e temporização da estrutura para a classe de aplicações em questão que utiliza a representação de ponto-fixo; um gerador automático de look-up tables utilizadas para substituir o cálculo exato de funções de ativação em redes MLP; um co-projeto de hardware/software que obteve resultados relevantes para implementação do algoritmo de treinamento Backpropagation e, considerando todos os resultados, uma estrutura que permite uma grande diversidade de trabalhos futuros de hardware para robótica por implementar um sistema de processamento de imagens em hardware.
id USP_5564a4dde6a167483d63eae327f8b9ac
oai_identifier_str oai:teses.usp.br:tde-13012017-164142
network_acronym_str USP
network_name_str Biblioteca Digital de Teses e Dissertações da USP
repository_id_str 2721
spelling Sistema de hardware reconfigurável para navegação visual de veículos autônomosReconfigurable hardware system for autonomous vehicles visual navigationAutonomous vehiclesAutonomous visual navigationComitês de redes neurais artificiaisHardware neural networksHardware reconfigurávelNavegação visual autônomaNeural network ensemblesReconfigurable hardwareRedes neurais em hardwareVeículos autônomos.O número de acidentes veiculares têm aumentado mundialmente e a principal causa associada a estes acidentes é a falha humana. O desenvolvimento de veículos autônomos é uma área que ganhou destaque em vários grupos de pesquisa do mundo, e um dos principais objetivos é proporcionar um meio de evitar estes acidentes. Os sistemas de navegação utilizados nestes veículos precisam ser extremamente confiáveis e robustos o que exige o desenvolvimento de soluções específicas para solucionar o problema. Devido ao baixo custo e a riqueza de informações, um dos sensores mais utilizados para executar navegação autônoma (e nos sistemas de auxílio ao motorista) são as câmeras. Informações sobre o ambiente são extraídas por meio do processamento das imagens obtidas pela câmera, e em seguida são utilizadas pelo sistema de navegação. O objetivo principal desta tese consiste do projeto, implementação, teste e otimização de um comitê de Redes Neurais Artificiais utilizadas em Sistemas de Visão Computacional para Veículos Autônomos (considerando em específico o modelo proposto e desenvolvido no Laboratório de Robótica Móvel (LRM)), em hardware, buscando acelerar seu tempo de execução, para utilização como classificadores de imagens nos veículos autônomos desenvolvidos pelo grupo de pesquisa do LRM. Dentre as contribuições deste trabalho, as principais são: um hardware configurado em um FPGA que executa a propagação do sinal em um comitê de redes neurais artificiais de forma rápida com baixo consumo de energia, comparado a um computador de propósito geral; resultados práticos avaliando precisão, consumo de hardware e temporização da estrutura para a classe de aplicações em questão que utiliza a representação de ponto-fixo; um gerador automático de look-up tables utilizadas para substituir o cálculo exato de funções de ativação em redes MLP; um co-projeto de hardware/software que obteve resultados relevantes para implementação do algoritmo de treinamento Backpropagation e, considerando todos os resultados, uma estrutura que permite uma grande diversidade de trabalhos futuros de hardware para robótica por implementar um sistema de processamento de imagens em hardware.The number of vehicular accidents have increased worldwide and the leading associated cause is the human failure. Autonomous vehicles design is gathering attention throughout the world in industry and universities. Several research groups in the world are designing autonomous vehicles or driving assistance systems with the main goal of providing means to avoid these accidents. Autonomous vehicles navigation systems need to be reliable with real-time performance which requires the design of specific solutions to solve the problem. Due to the low cost and high amount of collected information, one of the most used sensors to perform autonomous navigation (and driving assistance systems) are the cameras.Information from the environment is extracted through obtained images and then used by navigation systems. The main goal of this thesis is the design, implementation, testing and optimization of an Artificial Neural Network ensemble used in an autonomous vehicle navigation system (considering the navigation system proposed and designed in Mobile Robotics Lab (LRM)) in hardware, in order to increase its capabilites, to be used as image classifiers for robot visual navigation. The main contributions of this work are: a reconfigurable hardware that performs a fast signal propagation in a neural network ensemble consuming less energy when compared to a general purpose computer, due to the nature of the hardware device; practical results on the tradeoff between precision, hardware consumption and timing for the class of applications in question using the fixed-point representation; a automatic generator of look-up tables widely used in hardware neural networks to replace the exact calculation of activation functions; a hardware/software co-design that achieve significant results for backpropagation training algorithm implementation, and considering all presented results, a structure which allows a considerable number of future works on hardware image processing for robotics applications by implementing a functional image processing hardware system.Biblioteca Digitais de Teses e Dissertações da USPOsório, Fernando SantosDias, Mauricio Acconcia2016-10-04info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfhttp://www.teses.usp.br/teses/disponiveis/55/55134/tde-13012017-164142/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesspor2018-07-17T16:34:08Zoai:teses.usp.br:tde-13012017-164142Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212018-07-17T16:34:08Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false
dc.title.none.fl_str_mv Sistema de hardware reconfigurável para navegação visual de veículos autônomos
Reconfigurable hardware system for autonomous vehicles visual navigation
title Sistema de hardware reconfigurável para navegação visual de veículos autônomos
spellingShingle Sistema de hardware reconfigurável para navegação visual de veículos autônomos
Dias, Mauricio Acconcia
Autonomous vehicles
Autonomous visual navigation
Comitês de redes neurais artificiais
Hardware neural networks
Hardware reconfigurável
Navegação visual autônoma
Neural network ensembles
Reconfigurable hardware
Redes neurais em hardware
Veículos autônomos.
title_short Sistema de hardware reconfigurável para navegação visual de veículos autônomos
title_full Sistema de hardware reconfigurável para navegação visual de veículos autônomos
title_fullStr Sistema de hardware reconfigurável para navegação visual de veículos autônomos
title_full_unstemmed Sistema de hardware reconfigurável para navegação visual de veículos autônomos
title_sort Sistema de hardware reconfigurável para navegação visual de veículos autônomos
author Dias, Mauricio Acconcia
author_facet Dias, Mauricio Acconcia
author_role author
dc.contributor.none.fl_str_mv Osório, Fernando Santos
dc.contributor.author.fl_str_mv Dias, Mauricio Acconcia
dc.subject.por.fl_str_mv Autonomous vehicles
Autonomous visual navigation
Comitês de redes neurais artificiais
Hardware neural networks
Hardware reconfigurável
Navegação visual autônoma
Neural network ensembles
Reconfigurable hardware
Redes neurais em hardware
Veículos autônomos.
topic Autonomous vehicles
Autonomous visual navigation
Comitês de redes neurais artificiais
Hardware neural networks
Hardware reconfigurável
Navegação visual autônoma
Neural network ensembles
Reconfigurable hardware
Redes neurais em hardware
Veículos autônomos.
description O número de acidentes veiculares têm aumentado mundialmente e a principal causa associada a estes acidentes é a falha humana. O desenvolvimento de veículos autônomos é uma área que ganhou destaque em vários grupos de pesquisa do mundo, e um dos principais objetivos é proporcionar um meio de evitar estes acidentes. Os sistemas de navegação utilizados nestes veículos precisam ser extremamente confiáveis e robustos o que exige o desenvolvimento de soluções específicas para solucionar o problema. Devido ao baixo custo e a riqueza de informações, um dos sensores mais utilizados para executar navegação autônoma (e nos sistemas de auxílio ao motorista) são as câmeras. Informações sobre o ambiente são extraídas por meio do processamento das imagens obtidas pela câmera, e em seguida são utilizadas pelo sistema de navegação. O objetivo principal desta tese consiste do projeto, implementação, teste e otimização de um comitê de Redes Neurais Artificiais utilizadas em Sistemas de Visão Computacional para Veículos Autônomos (considerando em específico o modelo proposto e desenvolvido no Laboratório de Robótica Móvel (LRM)), em hardware, buscando acelerar seu tempo de execução, para utilização como classificadores de imagens nos veículos autônomos desenvolvidos pelo grupo de pesquisa do LRM. Dentre as contribuições deste trabalho, as principais são: um hardware configurado em um FPGA que executa a propagação do sinal em um comitê de redes neurais artificiais de forma rápida com baixo consumo de energia, comparado a um computador de propósito geral; resultados práticos avaliando precisão, consumo de hardware e temporização da estrutura para a classe de aplicações em questão que utiliza a representação de ponto-fixo; um gerador automático de look-up tables utilizadas para substituir o cálculo exato de funções de ativação em redes MLP; um co-projeto de hardware/software que obteve resultados relevantes para implementação do algoritmo de treinamento Backpropagation e, considerando todos os resultados, uma estrutura que permite uma grande diversidade de trabalhos futuros de hardware para robótica por implementar um sistema de processamento de imagens em hardware.
publishDate 2016
dc.date.none.fl_str_mv 2016-10-04
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://www.teses.usp.br/teses/disponiveis/55/55134/tde-13012017-164142/
url http://www.teses.usp.br/teses/disponiveis/55/55134/tde-13012017-164142/
dc.language.iso.fl_str_mv por
language por
dc.relation.none.fl_str_mv
dc.rights.driver.fl_str_mv Liberar o conteúdo para acesso público.
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Liberar o conteúdo para acesso público.
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.coverage.none.fl_str_mv
dc.publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
dc.source.none.fl_str_mv
reponame:Biblioteca Digital de Teses e Dissertações da USP
instname:Universidade de São Paulo (USP)
instacron:USP
instname_str Universidade de São Paulo (USP)
instacron_str USP
institution USP
reponame_str Biblioteca Digital de Teses e Dissertações da USP
collection Biblioteca Digital de Teses e Dissertações da USP
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)
repository.mail.fl_str_mv virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br
_version_ 1815257000625307648