Otimização energética em tempo real da operação de sistemas de abastecimento de água

Detalhes bibliográficos
Autor(a) principal: Cunha, Alice Araújo Rodrigues da
Data de Publicação: 2009
Tipo de documento: Dissertação
Idioma: por
Título da fonte: Biblioteca Digital de Teses e Dissertações da USP
Texto Completo: http://www.teses.usp.br/teses/disponiveis/18/18138/tde-23072009-100529/
Resumo: Este trabalho apresenta um modelo computacional para otimização energética de sistemas de abastecimento em tempo real. Tal modelo é composto por três módulos principais: (1) um módulo de simulação hidráulica que descreve o comportamento do sistema - EPANET; (2) um módulo de previsão de demandas que realiza a previsão das demandas futuras aplicável à utilização no tempo real (curto prazo), desenvolvido por Odan (2008); e, por fim, (3) um módulo otimizador estruturado em linguagem C++ que implementa a biblioteca de algoritmos genéticos do MIT - Massachusetts Institute of Technology and Matthew Wall, a GAlib, que permite determinar as rotinas operacionais (acionamento de válvulas e bombas) de forma à minimizar o custo de energia elétrica no sistema. O processo de otimização é divido em duas rotinas, nível estratégico e tempo real. Na otimização em nível estratégico, a partir das curvas típicas de demanda para cada nó de demanda do macro-sistema considerado, determina-se o conjunto de controles que minimizam os custos de energia elétrica, respeitando as restrições hidráulicas do sistema. Para cada conjunto de controles otimizados têm-se os níveis que os reservatórios irão atingir ao final de cada hora durante o horizonte de planejamento considerado, denominados níveis metas. Tais níveis servem de guia para a segunda etapa de otimização. A operação em tempo real se inicia com o recebimento dos dados sobre as condições atuais do sistema: níveis dos reservatórios e demandas da última hora. A partir das demandas informadas, o módulo de previsão de demandas gera todas as demandas para o horizonte de planejamento. Alimenta-se então o otimizador em tempo real com os níveis atuais dos reservatórios, os níveis metas e a previsão de demandas, obtêm-se o conjunto de regras operacionais ótimas para o horizonte de planejamento, sendo que são implementadas apenas as regras para a hora atual. E repete-se todo o processo a cada hora. Este modelo foi aplicado a um sistema de abastecimento de água. Os resultados obtidos demonstraram a eficiência do modelo em achar soluções factíveis de serem implementadas e com redução dos custos com energia elétrica.
id USP_5624c1fe5ed1be9d226e038a83792125
oai_identifier_str oai:teses.usp.br:tde-23072009-100529
network_acronym_str USP
network_name_str Biblioteca Digital de Teses e Dissertações da USP
repository_id_str 2721
spelling Otimização energética em tempo real da operação de sistemas de abastecimento de águaReal-time optimization of water supply system operationAlgoritmo genéticoEficiência energéticaEnergy costsGenetic algorithmOperação de sistemas de abastecimento de águaOtimização em tempo realReal time optimizationWater-distribution networks operationEste trabalho apresenta um modelo computacional para otimização energética de sistemas de abastecimento em tempo real. Tal modelo é composto por três módulos principais: (1) um módulo de simulação hidráulica que descreve o comportamento do sistema - EPANET; (2) um módulo de previsão de demandas que realiza a previsão das demandas futuras aplicável à utilização no tempo real (curto prazo), desenvolvido por Odan (2008); e, por fim, (3) um módulo otimizador estruturado em linguagem C++ que implementa a biblioteca de algoritmos genéticos do MIT - Massachusetts Institute of Technology and Matthew Wall, a GAlib, que permite determinar as rotinas operacionais (acionamento de válvulas e bombas) de forma à minimizar o custo de energia elétrica no sistema. O processo de otimização é divido em duas rotinas, nível estratégico e tempo real. Na otimização em nível estratégico, a partir das curvas típicas de demanda para cada nó de demanda do macro-sistema considerado, determina-se o conjunto de controles que minimizam os custos de energia elétrica, respeitando as restrições hidráulicas do sistema. Para cada conjunto de controles otimizados têm-se os níveis que os reservatórios irão atingir ao final de cada hora durante o horizonte de planejamento considerado, denominados níveis metas. Tais níveis servem de guia para a segunda etapa de otimização. A operação em tempo real se inicia com o recebimento dos dados sobre as condições atuais do sistema: níveis dos reservatórios e demandas da última hora. A partir das demandas informadas, o módulo de previsão de demandas gera todas as demandas para o horizonte de planejamento. Alimenta-se então o otimizador em tempo real com os níveis atuais dos reservatórios, os níveis metas e a previsão de demandas, obtêm-se o conjunto de regras operacionais ótimas para o horizonte de planejamento, sendo que são implementadas apenas as regras para a hora atual. E repete-se todo o processo a cada hora. Este modelo foi aplicado a um sistema de abastecimento de água. Os resultados obtidos demonstraram a eficiência do modelo em achar soluções factíveis de serem implementadas e com redução dos custos com energia elétrica.This work presents a computational model for real-time optimization of water-distribution networks operation. An integrated software tool has been developed which is composed of three main modules: (i) a hydraulic simulator that performs the extended period simulation of the system (EPANET); (ii) a short-term demand-forecasting model, based on the moving Fourier series; and (iii) an optimization module, using genetic algorithm, to minimize pumping costs. The optimization process is divided in two routines, the off-line optimization and the on-line optimization. The aim of the first routine is to find the ideal operation levels for the reservoirs which are used as guidance for the on-line optimization. The schedules to be implemented in the network are determined, however, by an on-line optimization which runs a new optimization processes at each SCADA (Supervisory Control and Data Acquisition) update. In the off-line optimization, near-optimal pump and valve settings for a selected operating horizon are found on the basis of the typical 24-hour water demand cycle in which each reservoir must also start and end with the same water level. The levels of the reservoirs at the end of each hour in this optimization process, called ideal levels, are considered in the on-line optimization as a constraint that represents a penalty added to the objective function whenever a reservoir level is below the ideal level at the end of each hourly operation. The on-line optimization starts updating the state of the network transmitted from the SCADA system and the demand forecast for the next 24-hour period. Near-optimal pump and valve settings for a selected operating horizon are then determined but only the control settings for the next hourly time step are used to implement the operation. At the next SCADA update (next-time step), the whole process is repeated on a continuous basis and a new operating strategy is computed. In this way, the control process moves forward in time, correcting any discrepancies as it progresses. This integrated software tool has been applied to a small example network. The results obtained from this application have shown that the proposed model offers a practical tool for finding feasible operation strategies for a water pipeline system, obtaining reductions in pumping energy costs.Biblioteca Digitais de Teses e Dissertações da USPReis, Luisa Fernanda RibeiroCunha, Alice Araújo Rodrigues da2009-05-12info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://www.teses.usp.br/teses/disponiveis/18/18138/tde-23072009-100529/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesspor2016-07-28T16:09:59Zoai:teses.usp.br:tde-23072009-100529Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212016-07-28T16:09:59Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false
dc.title.none.fl_str_mv Otimização energética em tempo real da operação de sistemas de abastecimento de água
Real-time optimization of water supply system operation
title Otimização energética em tempo real da operação de sistemas de abastecimento de água
spellingShingle Otimização energética em tempo real da operação de sistemas de abastecimento de água
Cunha, Alice Araújo Rodrigues da
Algoritmo genético
Eficiência energética
Energy costs
Genetic algorithm
Operação de sistemas de abastecimento de água
Otimização em tempo real
Real time optimization
Water-distribution networks operation
title_short Otimização energética em tempo real da operação de sistemas de abastecimento de água
title_full Otimização energética em tempo real da operação de sistemas de abastecimento de água
title_fullStr Otimização energética em tempo real da operação de sistemas de abastecimento de água
title_full_unstemmed Otimização energética em tempo real da operação de sistemas de abastecimento de água
title_sort Otimização energética em tempo real da operação de sistemas de abastecimento de água
author Cunha, Alice Araújo Rodrigues da
author_facet Cunha, Alice Araújo Rodrigues da
author_role author
dc.contributor.none.fl_str_mv Reis, Luisa Fernanda Ribeiro
dc.contributor.author.fl_str_mv Cunha, Alice Araújo Rodrigues da
dc.subject.por.fl_str_mv Algoritmo genético
Eficiência energética
Energy costs
Genetic algorithm
Operação de sistemas de abastecimento de água
Otimização em tempo real
Real time optimization
Water-distribution networks operation
topic Algoritmo genético
Eficiência energética
Energy costs
Genetic algorithm
Operação de sistemas de abastecimento de água
Otimização em tempo real
Real time optimization
Water-distribution networks operation
description Este trabalho apresenta um modelo computacional para otimização energética de sistemas de abastecimento em tempo real. Tal modelo é composto por três módulos principais: (1) um módulo de simulação hidráulica que descreve o comportamento do sistema - EPANET; (2) um módulo de previsão de demandas que realiza a previsão das demandas futuras aplicável à utilização no tempo real (curto prazo), desenvolvido por Odan (2008); e, por fim, (3) um módulo otimizador estruturado em linguagem C++ que implementa a biblioteca de algoritmos genéticos do MIT - Massachusetts Institute of Technology and Matthew Wall, a GAlib, que permite determinar as rotinas operacionais (acionamento de válvulas e bombas) de forma à minimizar o custo de energia elétrica no sistema. O processo de otimização é divido em duas rotinas, nível estratégico e tempo real. Na otimização em nível estratégico, a partir das curvas típicas de demanda para cada nó de demanda do macro-sistema considerado, determina-se o conjunto de controles que minimizam os custos de energia elétrica, respeitando as restrições hidráulicas do sistema. Para cada conjunto de controles otimizados têm-se os níveis que os reservatórios irão atingir ao final de cada hora durante o horizonte de planejamento considerado, denominados níveis metas. Tais níveis servem de guia para a segunda etapa de otimização. A operação em tempo real se inicia com o recebimento dos dados sobre as condições atuais do sistema: níveis dos reservatórios e demandas da última hora. A partir das demandas informadas, o módulo de previsão de demandas gera todas as demandas para o horizonte de planejamento. Alimenta-se então o otimizador em tempo real com os níveis atuais dos reservatórios, os níveis metas e a previsão de demandas, obtêm-se o conjunto de regras operacionais ótimas para o horizonte de planejamento, sendo que são implementadas apenas as regras para a hora atual. E repete-se todo o processo a cada hora. Este modelo foi aplicado a um sistema de abastecimento de água. Os resultados obtidos demonstraram a eficiência do modelo em achar soluções factíveis de serem implementadas e com redução dos custos com energia elétrica.
publishDate 2009
dc.date.none.fl_str_mv 2009-05-12
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://www.teses.usp.br/teses/disponiveis/18/18138/tde-23072009-100529/
url http://www.teses.usp.br/teses/disponiveis/18/18138/tde-23072009-100529/
dc.language.iso.fl_str_mv por
language por
dc.relation.none.fl_str_mv
dc.rights.driver.fl_str_mv Liberar o conteúdo para acesso público.
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Liberar o conteúdo para acesso público.
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.coverage.none.fl_str_mv
dc.publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
dc.source.none.fl_str_mv
reponame:Biblioteca Digital de Teses e Dissertações da USP
instname:Universidade de São Paulo (USP)
instacron:USP
instname_str Universidade de São Paulo (USP)
instacron_str USP
institution USP
reponame_str Biblioteca Digital de Teses e Dissertações da USP
collection Biblioteca Digital de Teses e Dissertações da USP
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)
repository.mail.fl_str_mv virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br
_version_ 1815257366721986560