Prospecting the interaction interface in the polymerization process of the enzyme glutaminase C

Detalhes bibliográficos
Autor(a) principal: Abreu, Flávia Mayumi Odahara de
Data de Publicação: 2023
Tipo de documento: Dissertação
Idioma: eng
Título da fonte: Biblioteca Digital de Teses e Dissertações da USP
Texto Completo: https://www.teses.usp.br/teses/disponiveis/76/76133/tde-26012024-104256/
Resumo: The energetic and biosynthetic demands in cancer are linked to the alteration of many pathways in the cell. One of the main changes occurs in glutaminolysis; glutamine is one of the essential nutrients for tumor metabolism and is converted into glutamate by the glutaminase enzymes, encoded in mammals by two distinct genes, GLS and GLS2. Among the existing isoforms, Glutaminase C (GAC) is crucial and found in abundance in different tumor lineages. It can be found in different oligomeric states with varying efficiency, and the most active type is characterized by the formation of helical filaments (fGAC) in the presence of inorganic phosphate (Pi). However, the molecular mechanism by which oligomerization and increased activity arise is still elusive. Therefore, this project aims to discuss a novel model proposed by our group through the combination of cryo-electron microscopy (cryo-EM) and biochemical studies of the wild-type or modified protein. To this end, site-directed mutagenesis was performed in residues from regions of the suggested interaction interface and activation loop. Wildtype mouse GAC and its mutants were produced by heterologous expression in bacteria on a large scale in soluble fraction and purified in three stages. By dynamic light scattering (DLS) analysis, it was possible to observe a shift from the tetrameric to the filamentous form of the wild-type protein upon addition of Pi, while mutants remained in their initial state under the same conditions. Enzymatic efficiency was confirmed by kinetic assays based on a coupled reaction, tracking the absorbance of 340 nm wavelength light by NADH formed during the conversion of glutamate into α- ketoglutarate by the enzyme glutamate dehydrogenase (GDH). Analysis showed that the mutants also show reduced efficiency in contrast to the wild-type protein even in the presence of Pi. Thus, the data suggest that mutations that prevent filamentation are also responsible for inactivating the protein, confirming that substituted residues are critical for the formation, stabilization, and function of fGAC. We propose a mechanism for the transition from inactive dimers to hyper-active fGAC; understanding this process could establish the enzyme Glutaminase C as a promising molecular target for the development of new anti-tumor therapies.
id USP_569e80d8dfe135016e55c4a3c23614f4
oai_identifier_str oai:teses.usp.br:tde-26012024-104256
network_acronym_str USP
network_name_str Biblioteca Digital de Teses e Dissertações da USP
repository_id_str 2721
spelling Prospecting the interaction interface in the polymerization process of the enzyme glutaminase CProspecção da interface de interação no processo de polimerização da enzima Glutaminase CBiologia estruturalCancerCâncerEnzimasEnzymesGlutaminaGlutamineNeoplasiaNeoplasiaStructural biologyThe energetic and biosynthetic demands in cancer are linked to the alteration of many pathways in the cell. One of the main changes occurs in glutaminolysis; glutamine is one of the essential nutrients for tumor metabolism and is converted into glutamate by the glutaminase enzymes, encoded in mammals by two distinct genes, GLS and GLS2. Among the existing isoforms, Glutaminase C (GAC) is crucial and found in abundance in different tumor lineages. It can be found in different oligomeric states with varying efficiency, and the most active type is characterized by the formation of helical filaments (fGAC) in the presence of inorganic phosphate (Pi). However, the molecular mechanism by which oligomerization and increased activity arise is still elusive. Therefore, this project aims to discuss a novel model proposed by our group through the combination of cryo-electron microscopy (cryo-EM) and biochemical studies of the wild-type or modified protein. To this end, site-directed mutagenesis was performed in residues from regions of the suggested interaction interface and activation loop. Wildtype mouse GAC and its mutants were produced by heterologous expression in bacteria on a large scale in soluble fraction and purified in three stages. By dynamic light scattering (DLS) analysis, it was possible to observe a shift from the tetrameric to the filamentous form of the wild-type protein upon addition of Pi, while mutants remained in their initial state under the same conditions. Enzymatic efficiency was confirmed by kinetic assays based on a coupled reaction, tracking the absorbance of 340 nm wavelength light by NADH formed during the conversion of glutamate into α- ketoglutarate by the enzyme glutamate dehydrogenase (GDH). Analysis showed that the mutants also show reduced efficiency in contrast to the wild-type protein even in the presence of Pi. Thus, the data suggest that mutations that prevent filamentation are also responsible for inactivating the protein, confirming that substituted residues are critical for the formation, stabilization, and function of fGAC. We propose a mechanism for the transition from inactive dimers to hyper-active fGAC; understanding this process could establish the enzyme Glutaminase C as a promising molecular target for the development of new anti-tumor therapies.As demandas energéticas e biossintéticas no câncer estão relacionadas à alteração de muitas vias na célula. Uma das principais mudanças ocorre na glutaminólise; a glutamina é um dos nutrientes essenciais para o metabolismo tumoral e é convertida em glutamato pelas enzimas glutaminases, codificadas em mamíferos por dois genes distintos, GLS e GLS2. Entre as isoformas existentes, a Glutaminase C (GAC) é crucial e encontrada em abundância em diferentes linhagens tumorais. Ela pode ser encontrada em diferentes estados oligoméricos com eficiência variável, e o tipo mais ativo é caracterizado pela formação de filamentos helicoidais (fGAC) na presença de fosfato inorgânico (Pi). No entanto, o mecanismo molecular pelo qual ocorre a oligomerização e o aumento de atividade ainda é desconhecido. Portanto, este projeto tem como objetivo discutir um novo modelo proposto pelo nosso grupo por meio da combinação de estudos de criomicroscopia eletrônica (cryo-EM) e bioquímicos da proteína selvagem ou modificada. Para isso, foi realizada mutagênese sítio-dirigida em resíduos de regiões da interface de interação sugerida e do loop de ativação. A GAC selvagem de camundongo e mutantes foram produzidas por expressão heteróloga em sistema bacteriano em grande escala na fração solúvel e purificadas em três etapas. Por meio da análise por espalhamento dinâmico de luz (DLS), foi possível observar uma transição da forma tetramérica para a forma filamentosa da proteína selvagem após a adição de Pi, enquanto as mutantes permaneceram em seu estado inicial sob as mesmas condições. A eficiência enzimática foi confirmada por ensaios cinéticos baseados em uma reação acoplada, acompanhando a absorbância de luz de comprimento de onda de 340 nm pelo NADH formado durante a conversão de glutamato em α-cetoglutarato pela enzima glutamato desidrogenase (GDH). A análise mostrou que os mutantes também apresentam eficiência reduzida em contraste com a proteína selvagem, mesmo na presença de Pi. Assim, os dados sugerem que as mutações que impedem a formação de filamentos também são responsáveis pela inativação da proteína, confirmando que os resíduos substituídos são críticos para a formação, estabilização e função de fGAC. Propomos um mecanismo para a transição de dímeros inativos para fGAC hiperativos; entender esse processo poderia estabelecer a enzima Glutaminase C como um alvo molecular promissor para o desenvolvimento de novas terapias antitumoraisBiblioteca Digitais de Teses e Dissertações da USPAmbrosio, Andre Luis BerteliAbreu, Flávia Mayumi Odahara de2023-10-30info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttps://www.teses.usp.br/teses/disponiveis/76/76133/tde-26012024-104256/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesseng2024-08-23T14:16:02Zoai:teses.usp.br:tde-26012024-104256Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212024-08-23T14:16:02Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false
dc.title.none.fl_str_mv Prospecting the interaction interface in the polymerization process of the enzyme glutaminase C
Prospecção da interface de interação no processo de polimerização da enzima Glutaminase C
title Prospecting the interaction interface in the polymerization process of the enzyme glutaminase C
spellingShingle Prospecting the interaction interface in the polymerization process of the enzyme glutaminase C
Abreu, Flávia Mayumi Odahara de
Biologia estrutural
Cancer
Câncer
Enzimas
Enzymes
Glutamina
Glutamine
Neoplasia
Neoplasia
Structural biology
title_short Prospecting the interaction interface in the polymerization process of the enzyme glutaminase C
title_full Prospecting the interaction interface in the polymerization process of the enzyme glutaminase C
title_fullStr Prospecting the interaction interface in the polymerization process of the enzyme glutaminase C
title_full_unstemmed Prospecting the interaction interface in the polymerization process of the enzyme glutaminase C
title_sort Prospecting the interaction interface in the polymerization process of the enzyme glutaminase C
author Abreu, Flávia Mayumi Odahara de
author_facet Abreu, Flávia Mayumi Odahara de
author_role author
dc.contributor.none.fl_str_mv Ambrosio, Andre Luis Berteli
dc.contributor.author.fl_str_mv Abreu, Flávia Mayumi Odahara de
dc.subject.por.fl_str_mv Biologia estrutural
Cancer
Câncer
Enzimas
Enzymes
Glutamina
Glutamine
Neoplasia
Neoplasia
Structural biology
topic Biologia estrutural
Cancer
Câncer
Enzimas
Enzymes
Glutamina
Glutamine
Neoplasia
Neoplasia
Structural biology
description The energetic and biosynthetic demands in cancer are linked to the alteration of many pathways in the cell. One of the main changes occurs in glutaminolysis; glutamine is one of the essential nutrients for tumor metabolism and is converted into glutamate by the glutaminase enzymes, encoded in mammals by two distinct genes, GLS and GLS2. Among the existing isoforms, Glutaminase C (GAC) is crucial and found in abundance in different tumor lineages. It can be found in different oligomeric states with varying efficiency, and the most active type is characterized by the formation of helical filaments (fGAC) in the presence of inorganic phosphate (Pi). However, the molecular mechanism by which oligomerization and increased activity arise is still elusive. Therefore, this project aims to discuss a novel model proposed by our group through the combination of cryo-electron microscopy (cryo-EM) and biochemical studies of the wild-type or modified protein. To this end, site-directed mutagenesis was performed in residues from regions of the suggested interaction interface and activation loop. Wildtype mouse GAC and its mutants were produced by heterologous expression in bacteria on a large scale in soluble fraction and purified in three stages. By dynamic light scattering (DLS) analysis, it was possible to observe a shift from the tetrameric to the filamentous form of the wild-type protein upon addition of Pi, while mutants remained in their initial state under the same conditions. Enzymatic efficiency was confirmed by kinetic assays based on a coupled reaction, tracking the absorbance of 340 nm wavelength light by NADH formed during the conversion of glutamate into α- ketoglutarate by the enzyme glutamate dehydrogenase (GDH). Analysis showed that the mutants also show reduced efficiency in contrast to the wild-type protein even in the presence of Pi. Thus, the data suggest that mutations that prevent filamentation are also responsible for inactivating the protein, confirming that substituted residues are critical for the formation, stabilization, and function of fGAC. We propose a mechanism for the transition from inactive dimers to hyper-active fGAC; understanding this process could establish the enzyme Glutaminase C as a promising molecular target for the development of new anti-tumor therapies.
publishDate 2023
dc.date.none.fl_str_mv 2023-10-30
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://www.teses.usp.br/teses/disponiveis/76/76133/tde-26012024-104256/
url https://www.teses.usp.br/teses/disponiveis/76/76133/tde-26012024-104256/
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv
dc.rights.driver.fl_str_mv Liberar o conteúdo para acesso público.
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Liberar o conteúdo para acesso público.
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.coverage.none.fl_str_mv
dc.publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
dc.source.none.fl_str_mv
reponame:Biblioteca Digital de Teses e Dissertações da USP
instname:Universidade de São Paulo (USP)
instacron:USP
instname_str Universidade de São Paulo (USP)
instacron_str USP
institution USP
reponame_str Biblioteca Digital de Teses e Dissertações da USP
collection Biblioteca Digital de Teses e Dissertações da USP
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)
repository.mail.fl_str_mv virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br
_version_ 1809091085565165568