Enhancing Dimensionality Reduction Techniques for Deep Neural Network Visualization
Autor(a) principal: | |
---|---|
Data de Publicação: | 2020 |
Tipo de documento: | Tese |
Idioma: | eng |
Título da fonte: | Biblioteca Digital de Teses e Dissertações da USP |
Texto Completo: | https://www.teses.usp.br/teses/disponiveis/55/55134/tde-25022021-130621/ |
Resumo: | Deep Neural Networks have achieved impressive results in a wide range of applications over the past few years, being responsible for many advances in computational technology. However, debugging and understanding the inner workings from these models is a complex task, as there are often millions of variables involved in every decision. Aiming to solve this problem, researchers from the fields of Visual Analytics and Explainable Artificial Intelligence have proposed several approaches to visualize and explain different aspects of DNN models. One of such approaches is the use of Dimensionality Reduction techniques for hidden layer output visualization, which has been employed in literature with relative success. However, there are certain limitations to applying these techniques in this context that need to be addressed, such as the visual comparison between multiple multidimensional projections. Furthermore, the particular characteristics of this domain can be taken into account to generate specialized visual representations that are more informative. This doctorate thesis shows the process of investigating problems and opportunities in DNN visualization using dimensionality reduction and the development of improved visualization methods for this domain. |
id |
USP_5797589ec649abf59312eb361d1604e8 |
---|---|
oai_identifier_str |
oai:teses.usp.br:tde-25022021-130621 |
network_acronym_str |
USP |
network_name_str |
Biblioteca Digital de Teses e Dissertações da USP |
repository_id_str |
2721 |
spelling |
Enhancing Dimensionality Reduction Techniques for Deep Neural Network VisualizationAprimorando Técnicas de Redução de Dimensionalidade para Visualização de Redes Neurais ProfundasDeep learningDeep learningDimensionality reductionExplainable artificial intelligenceExplainable artificial intelligenceMultidimensional projectionsNeural network visualizationProjeções multidimensionaisRedução de dimensionalidadeVisualização de redes neuraisDeep Neural Networks have achieved impressive results in a wide range of applications over the past few years, being responsible for many advances in computational technology. However, debugging and understanding the inner workings from these models is a complex task, as there are often millions of variables involved in every decision. Aiming to solve this problem, researchers from the fields of Visual Analytics and Explainable Artificial Intelligence have proposed several approaches to visualize and explain different aspects of DNN models. One of such approaches is the use of Dimensionality Reduction techniques for hidden layer output visualization, which has been employed in literature with relative success. However, there are certain limitations to applying these techniques in this context that need to be addressed, such as the visual comparison between multiple multidimensional projections. Furthermore, the particular characteristics of this domain can be taken into account to generate specialized visual representations that are more informative. This doctorate thesis shows the process of investigating problems and opportunities in DNN visualization using dimensionality reduction and the development of improved visualization methods for this domain.Redes neurais profundas tem demonstrado resultados impressionantes em uma grande variedade de aplicações computacionais nos últimos anos, sendo responsáveis por diversos avanços em tecnologia. No entanto, testar e entender os mecanismos internos destes modelos é uma tarefa complexa, uma vez que o número de variáveis envolvidas em cada decisão pode chegar aos milhões. Visando resolver este problema, pesquisadores dos campos de Visual Analytics e Explainable Artificial Intelligence tem proposto várias abordagens para visualizar e explicar diferentes aspectos de modelos de redes neurais. Uma destas abordagens é o uso de técnicas de redução de dimensionalidade para a visualização do comportamento de camadas ocultas, empregado com relativo sucesso na literatura. Porém, aplicar tais técnicas neste contexto implica em certas limitações que precisam ser tratadas, principalmente no que diz respeito à comparação visual entre múltiplas projeções multidimensonais. Adicionalmente, certas características particulares deste domínio podem ser utilizadas para gerar visualizações especializadas mais informativas. Esta tese de doutorado mostra o processo de investigação de problemas e oportunidades em visualização de redes neurais utilizando redução de dimensionalidade e o desenvolvimento de métodos de visualização aprimorados para este domínio.Biblioteca Digitais de Teses e Dissertações da USPPaulovich, Fernando VieiraCantareira, Gabriel Dias2020-11-30info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfhttps://www.teses.usp.br/teses/disponiveis/55/55134/tde-25022021-130621/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesseng2021-02-25T19:13:01Zoai:teses.usp.br:tde-25022021-130621Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212021-02-25T19:13:01Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false |
dc.title.none.fl_str_mv |
Enhancing Dimensionality Reduction Techniques for Deep Neural Network Visualization Aprimorando Técnicas de Redução de Dimensionalidade para Visualização de Redes Neurais Profundas |
title |
Enhancing Dimensionality Reduction Techniques for Deep Neural Network Visualization |
spellingShingle |
Enhancing Dimensionality Reduction Techniques for Deep Neural Network Visualization Cantareira, Gabriel Dias Deep learning Deep learning Dimensionality reduction Explainable artificial intelligence Explainable artificial intelligence Multidimensional projections Neural network visualization Projeções multidimensionais Redução de dimensionalidade Visualização de redes neurais |
title_short |
Enhancing Dimensionality Reduction Techniques for Deep Neural Network Visualization |
title_full |
Enhancing Dimensionality Reduction Techniques for Deep Neural Network Visualization |
title_fullStr |
Enhancing Dimensionality Reduction Techniques for Deep Neural Network Visualization |
title_full_unstemmed |
Enhancing Dimensionality Reduction Techniques for Deep Neural Network Visualization |
title_sort |
Enhancing Dimensionality Reduction Techniques for Deep Neural Network Visualization |
author |
Cantareira, Gabriel Dias |
author_facet |
Cantareira, Gabriel Dias |
author_role |
author |
dc.contributor.none.fl_str_mv |
Paulovich, Fernando Vieira |
dc.contributor.author.fl_str_mv |
Cantareira, Gabriel Dias |
dc.subject.por.fl_str_mv |
Deep learning Deep learning Dimensionality reduction Explainable artificial intelligence Explainable artificial intelligence Multidimensional projections Neural network visualization Projeções multidimensionais Redução de dimensionalidade Visualização de redes neurais |
topic |
Deep learning Deep learning Dimensionality reduction Explainable artificial intelligence Explainable artificial intelligence Multidimensional projections Neural network visualization Projeções multidimensionais Redução de dimensionalidade Visualização de redes neurais |
description |
Deep Neural Networks have achieved impressive results in a wide range of applications over the past few years, being responsible for many advances in computational technology. However, debugging and understanding the inner workings from these models is a complex task, as there are often millions of variables involved in every decision. Aiming to solve this problem, researchers from the fields of Visual Analytics and Explainable Artificial Intelligence have proposed several approaches to visualize and explain different aspects of DNN models. One of such approaches is the use of Dimensionality Reduction techniques for hidden layer output visualization, which has been employed in literature with relative success. However, there are certain limitations to applying these techniques in this context that need to be addressed, such as the visual comparison between multiple multidimensional projections. Furthermore, the particular characteristics of this domain can be taken into account to generate specialized visual representations that are more informative. This doctorate thesis shows the process of investigating problems and opportunities in DNN visualization using dimensionality reduction and the development of improved visualization methods for this domain. |
publishDate |
2020 |
dc.date.none.fl_str_mv |
2020-11-30 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
format |
doctoralThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://www.teses.usp.br/teses/disponiveis/55/55134/tde-25022021-130621/ |
url |
https://www.teses.usp.br/teses/disponiveis/55/55134/tde-25022021-130621/ |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
|
dc.rights.driver.fl_str_mv |
Liberar o conteúdo para acesso público. info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Liberar o conteúdo para acesso público. |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.coverage.none.fl_str_mv |
|
dc.publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações da USP instname:Universidade de São Paulo (USP) instacron:USP |
instname_str |
Universidade de São Paulo (USP) |
instacron_str |
USP |
institution |
USP |
reponame_str |
Biblioteca Digital de Teses e Dissertações da USP |
collection |
Biblioteca Digital de Teses e Dissertações da USP |
repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP) |
repository.mail.fl_str_mv |
virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br |
_version_ |
1815257322775117824 |