Enhancing Dimensionality Reduction Techniques for Deep Neural Network Visualization

Detalhes bibliográficos
Autor(a) principal: Cantareira, Gabriel Dias
Data de Publicação: 2020
Tipo de documento: Tese
Idioma: eng
Título da fonte: Biblioteca Digital de Teses e Dissertações da USP
Texto Completo: https://www.teses.usp.br/teses/disponiveis/55/55134/tde-25022021-130621/
Resumo: Deep Neural Networks have achieved impressive results in a wide range of applications over the past few years, being responsible for many advances in computational technology. However, debugging and understanding the inner workings from these models is a complex task, as there are often millions of variables involved in every decision. Aiming to solve this problem, researchers from the fields of Visual Analytics and Explainable Artificial Intelligence have proposed several approaches to visualize and explain different aspects of DNN models. One of such approaches is the use of Dimensionality Reduction techniques for hidden layer output visualization, which has been employed in literature with relative success. However, there are certain limitations to applying these techniques in this context that need to be addressed, such as the visual comparison between multiple multidimensional projections. Furthermore, the particular characteristics of this domain can be taken into account to generate specialized visual representations that are more informative. This doctorate thesis shows the process of investigating problems and opportunities in DNN visualization using dimensionality reduction and the development of improved visualization methods for this domain.
id USP_5797589ec649abf59312eb361d1604e8
oai_identifier_str oai:teses.usp.br:tde-25022021-130621
network_acronym_str USP
network_name_str Biblioteca Digital de Teses e Dissertações da USP
repository_id_str 2721
spelling Enhancing Dimensionality Reduction Techniques for Deep Neural Network VisualizationAprimorando Técnicas de Redução de Dimensionalidade para Visualização de Redes Neurais ProfundasDeep learningDeep learningDimensionality reductionExplainable artificial intelligenceExplainable artificial intelligenceMultidimensional projectionsNeural network visualizationProjeções multidimensionaisRedução de dimensionalidadeVisualização de redes neuraisDeep Neural Networks have achieved impressive results in a wide range of applications over the past few years, being responsible for many advances in computational technology. However, debugging and understanding the inner workings from these models is a complex task, as there are often millions of variables involved in every decision. Aiming to solve this problem, researchers from the fields of Visual Analytics and Explainable Artificial Intelligence have proposed several approaches to visualize and explain different aspects of DNN models. One of such approaches is the use of Dimensionality Reduction techniques for hidden layer output visualization, which has been employed in literature with relative success. However, there are certain limitations to applying these techniques in this context that need to be addressed, such as the visual comparison between multiple multidimensional projections. Furthermore, the particular characteristics of this domain can be taken into account to generate specialized visual representations that are more informative. This doctorate thesis shows the process of investigating problems and opportunities in DNN visualization using dimensionality reduction and the development of improved visualization methods for this domain.Redes neurais profundas tem demonstrado resultados impressionantes em uma grande variedade de aplicações computacionais nos últimos anos, sendo responsáveis por diversos avanços em tecnologia. No entanto, testar e entender os mecanismos internos destes modelos é uma tarefa complexa, uma vez que o número de variáveis envolvidas em cada decisão pode chegar aos milhões. Visando resolver este problema, pesquisadores dos campos de Visual Analytics e Explainable Artificial Intelligence tem proposto várias abordagens para visualizar e explicar diferentes aspectos de modelos de redes neurais. Uma destas abordagens é o uso de técnicas de redução de dimensionalidade para a visualização do comportamento de camadas ocultas, empregado com relativo sucesso na literatura. Porém, aplicar tais técnicas neste contexto implica em certas limitações que precisam ser tratadas, principalmente no que diz respeito à comparação visual entre múltiplas projeções multidimensonais. Adicionalmente, certas características particulares deste domínio podem ser utilizadas para gerar visualizações especializadas mais informativas. Esta tese de doutorado mostra o processo de investigação de problemas e oportunidades em visualização de redes neurais utilizando redução de dimensionalidade e o desenvolvimento de métodos de visualização aprimorados para este domínio.Biblioteca Digitais de Teses e Dissertações da USPPaulovich, Fernando VieiraCantareira, Gabriel Dias2020-11-30info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfhttps://www.teses.usp.br/teses/disponiveis/55/55134/tde-25022021-130621/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesseng2021-02-25T19:13:01Zoai:teses.usp.br:tde-25022021-130621Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212021-02-25T19:13:01Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false
dc.title.none.fl_str_mv Enhancing Dimensionality Reduction Techniques for Deep Neural Network Visualization
Aprimorando Técnicas de Redução de Dimensionalidade para Visualização de Redes Neurais Profundas
title Enhancing Dimensionality Reduction Techniques for Deep Neural Network Visualization
spellingShingle Enhancing Dimensionality Reduction Techniques for Deep Neural Network Visualization
Cantareira, Gabriel Dias
Deep learning
Deep learning
Dimensionality reduction
Explainable artificial intelligence
Explainable artificial intelligence
Multidimensional projections
Neural network visualization
Projeções multidimensionais
Redução de dimensionalidade
Visualização de redes neurais
title_short Enhancing Dimensionality Reduction Techniques for Deep Neural Network Visualization
title_full Enhancing Dimensionality Reduction Techniques for Deep Neural Network Visualization
title_fullStr Enhancing Dimensionality Reduction Techniques for Deep Neural Network Visualization
title_full_unstemmed Enhancing Dimensionality Reduction Techniques for Deep Neural Network Visualization
title_sort Enhancing Dimensionality Reduction Techniques for Deep Neural Network Visualization
author Cantareira, Gabriel Dias
author_facet Cantareira, Gabriel Dias
author_role author
dc.contributor.none.fl_str_mv Paulovich, Fernando Vieira
dc.contributor.author.fl_str_mv Cantareira, Gabriel Dias
dc.subject.por.fl_str_mv Deep learning
Deep learning
Dimensionality reduction
Explainable artificial intelligence
Explainable artificial intelligence
Multidimensional projections
Neural network visualization
Projeções multidimensionais
Redução de dimensionalidade
Visualização de redes neurais
topic Deep learning
Deep learning
Dimensionality reduction
Explainable artificial intelligence
Explainable artificial intelligence
Multidimensional projections
Neural network visualization
Projeções multidimensionais
Redução de dimensionalidade
Visualização de redes neurais
description Deep Neural Networks have achieved impressive results in a wide range of applications over the past few years, being responsible for many advances in computational technology. However, debugging and understanding the inner workings from these models is a complex task, as there are often millions of variables involved in every decision. Aiming to solve this problem, researchers from the fields of Visual Analytics and Explainable Artificial Intelligence have proposed several approaches to visualize and explain different aspects of DNN models. One of such approaches is the use of Dimensionality Reduction techniques for hidden layer output visualization, which has been employed in literature with relative success. However, there are certain limitations to applying these techniques in this context that need to be addressed, such as the visual comparison between multiple multidimensional projections. Furthermore, the particular characteristics of this domain can be taken into account to generate specialized visual representations that are more informative. This doctorate thesis shows the process of investigating problems and opportunities in DNN visualization using dimensionality reduction and the development of improved visualization methods for this domain.
publishDate 2020
dc.date.none.fl_str_mv 2020-11-30
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://www.teses.usp.br/teses/disponiveis/55/55134/tde-25022021-130621/
url https://www.teses.usp.br/teses/disponiveis/55/55134/tde-25022021-130621/
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv
dc.rights.driver.fl_str_mv Liberar o conteúdo para acesso público.
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Liberar o conteúdo para acesso público.
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.coverage.none.fl_str_mv
dc.publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
dc.source.none.fl_str_mv
reponame:Biblioteca Digital de Teses e Dissertações da USP
instname:Universidade de São Paulo (USP)
instacron:USP
instname_str Universidade de São Paulo (USP)
instacron_str USP
institution USP
reponame_str Biblioteca Digital de Teses e Dissertações da USP
collection Biblioteca Digital de Teses e Dissertações da USP
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)
repository.mail.fl_str_mv virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br
_version_ 1815257322775117824