Modeling and Analyzing Social Networks of Games
Autor(a) principal: | |
---|---|
Data de Publicação: | 2020 |
Tipo de documento: | Dissertação |
Idioma: | eng |
Título da fonte: | Biblioteca Digital de Teses e Dissertações da USP |
Texto Completo: | https://www.teses.usp.br/teses/disponiveis/55/55134/tde-27072020-134224/ |
Resumo: | Digital games are dynamic environments where the players interact with the games and, commonly, also with other players. The players interactions have many types of relationships, both with other players (e.g., be friend, share games) and with games (e.g., buy, play, like); these relationships can be represented by social networks, i.e., in this context, a Social Network of Games (SNG). During a gameplay, the player produces a vast amount of data continuously: data that represents his/her experiences, preferences and behavioral patterns. In this way, it is possible to use these data to understand the players preferences, i.e., Player Modeling, and to improve the attractiveness of new games. However, this task requires the analysis of a vast amount of data, what is impracticable to do manually, then requiring robust algorithms of a research area named Knowledge Discovery in Databases (KDD) to overcome such an issue. It is possible to apply KDD techniques in data of a SNG to model the players, as well as to identify intrinsic features of the games. This MSc work aimed to explore a real SNG using KDD techniques for identifying common features among popular games, which may represent reasons why the games are popular. However, to achieve this goal, it is necessary to analyze games developed by non-influencer makers, because influencers may receive biased attention in their games that is not necessarily motivated by the game quality. First, we focused on detecting the game influencers to filter them out; empirical experiments show that our approach automatically detects influencers with high precision, even when using data from distinct nationalities for training and testing. Then, we performed a detailed analysis of games features, searching for object combinations that occur in the popular games developed by non-influencer makers, so to support game designers in the elaboration process of new games. This case study introduces a new design pattern for platform games. Also, we present an extensive analysis of object combinations that commonly occur in popular games. All experiments were performed on players and games from the worldwide well-known Super Mario Maker (Nintendo, Kyoto, Japan). |
id |
USP_57ab53f6b5b4cb73391ab1a69f498624 |
---|---|
oai_identifier_str |
oai:teses.usp.br:tde-27072020-134224 |
network_acronym_str |
USP |
network_name_str |
Biblioteca Digital de Teses e Dissertações da USP |
repository_id_str |
2721 |
spelling |
Modeling and Analyzing Social Networks of GamesModelando e Analizando Redes Sociais de JogosData miningDesign de jogosDetecção de influenciadores digitaisDetection of influencersGame designMineração de dadosModelagem de jogadorPlayer modelingRedes social de jogosSocial network of gamesDigital games are dynamic environments where the players interact with the games and, commonly, also with other players. The players interactions have many types of relationships, both with other players (e.g., be friend, share games) and with games (e.g., buy, play, like); these relationships can be represented by social networks, i.e., in this context, a Social Network of Games (SNG). During a gameplay, the player produces a vast amount of data continuously: data that represents his/her experiences, preferences and behavioral patterns. In this way, it is possible to use these data to understand the players preferences, i.e., Player Modeling, and to improve the attractiveness of new games. However, this task requires the analysis of a vast amount of data, what is impracticable to do manually, then requiring robust algorithms of a research area named Knowledge Discovery in Databases (KDD) to overcome such an issue. It is possible to apply KDD techniques in data of a SNG to model the players, as well as to identify intrinsic features of the games. This MSc work aimed to explore a real SNG using KDD techniques for identifying common features among popular games, which may represent reasons why the games are popular. However, to achieve this goal, it is necessary to analyze games developed by non-influencer makers, because influencers may receive biased attention in their games that is not necessarily motivated by the game quality. First, we focused on detecting the game influencers to filter them out; empirical experiments show that our approach automatically detects influencers with high precision, even when using data from distinct nationalities for training and testing. Then, we performed a detailed analysis of games features, searching for object combinations that occur in the popular games developed by non-influencer makers, so to support game designers in the elaboration process of new games. This case study introduces a new design pattern for platform games. Also, we present an extensive analysis of object combinations that commonly occur in popular games. All experiments were performed on players and games from the worldwide well-known Super Mario Maker (Nintendo, Kyoto, Japan).Os jogos digitais são ambientes dinâmicos em que o jogador interage com o jogo e, muitas vezes, também com outros jogadores. As interações dos jogadores representam diversos tipos de relacionamentos, seja com outros jogadores (e.g., ser amigo, compartilhar jogos) ou com os jogos (e.g., comprar, jogar, curtir); estes relacionamentos podem ser representados por redes sociais, neste contexto, uma Redes Social de Jogos (SNG). Durante suas partidas, o jogador produz uma grande quantidade de dados continuamente: dados que representam as suas experiências, preferências e padrões comportamentais. Desta forma, é possível utilizar tais dados para compreender as preferências dos jogadores, i.e., Modelagem de Jogador, e para tornar novos jogos mais atrativos. Contudo, isto requer a análise de uma grande quantidade de dados, uma tarefa impraticável de se fazer manualmente, e assim faz-se necessário o uso de algoritmos robustos de uma linha de pesquisa denominada Descoberta de Conhecimento em Base de Dados (KDD). É possível utilizar técnicas de KDD em dados de uma SNG para modelar os jogadores, bem como identificar características intrínsecas dos jogos. O presente trabalho de Mestrado visa explorar uma SNG real utilizando técnicas de KDD com o propósito de identificar características comuns em jogos populares, as quais podem ser causas para a sua popularidade. Porém, para alcançar este objetivo, é necessário analisar jogos elaborados por desenvolvedores não-influenciadores, pois os influenciadores, por sua vez, podem receber atenção em seus jogos por motivos alheios à qualidade do jogo. Inicialmente, nos concentramos em detectar os influenciadores para filtrá-los; experimentos empíricos demonstraram que o nosso método detecta influenciadores automaticamente com alta precisão, mesmo quanto foram utilizados dados de países distintos para treinamento e teste. Em sequência, realizamos uma análise detalhada sobre as características dos jogos, em busca de combinações de objetos que que são comuns em jogos populares elaborados por usuários não-influenciadores, com o objetivo de auxiliar o profissional no papel de designer de jogos a elaborar novos jogos. Este estudo de caso propõe um novo padrão de design para jogos de plataforma, bem como apresenta uma extensa análise sobre as combinações de objetos comumente presentes em jogos populares. Todos os experimentos foram realizados sobre jogadores e jogos do Super Mario Maker (Nintendo, Quioto, Japão), o qual é bem conhecido mundialmente.Biblioteca Digitais de Teses e Dissertações da USPCordeiro, Robson Leonardo FerreiraMoraes, Leonardo Mauro Pereira2020-05-08info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttps://www.teses.usp.br/teses/disponiveis/55/55134/tde-27072020-134224/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesseng2020-08-13T00:47:34Zoai:teses.usp.br:tde-27072020-134224Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212020-08-13T00:47:34Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false |
dc.title.none.fl_str_mv |
Modeling and Analyzing Social Networks of Games Modelando e Analizando Redes Sociais de Jogos |
title |
Modeling and Analyzing Social Networks of Games |
spellingShingle |
Modeling and Analyzing Social Networks of Games Moraes, Leonardo Mauro Pereira Data mining Design de jogos Detecção de influenciadores digitais Detection of influencers Game design Mineração de dados Modelagem de jogador Player modeling Redes social de jogos Social network of games |
title_short |
Modeling and Analyzing Social Networks of Games |
title_full |
Modeling and Analyzing Social Networks of Games |
title_fullStr |
Modeling and Analyzing Social Networks of Games |
title_full_unstemmed |
Modeling and Analyzing Social Networks of Games |
title_sort |
Modeling and Analyzing Social Networks of Games |
author |
Moraes, Leonardo Mauro Pereira |
author_facet |
Moraes, Leonardo Mauro Pereira |
author_role |
author |
dc.contributor.none.fl_str_mv |
Cordeiro, Robson Leonardo Ferreira |
dc.contributor.author.fl_str_mv |
Moraes, Leonardo Mauro Pereira |
dc.subject.por.fl_str_mv |
Data mining Design de jogos Detecção de influenciadores digitais Detection of influencers Game design Mineração de dados Modelagem de jogador Player modeling Redes social de jogos Social network of games |
topic |
Data mining Design de jogos Detecção de influenciadores digitais Detection of influencers Game design Mineração de dados Modelagem de jogador Player modeling Redes social de jogos Social network of games |
description |
Digital games are dynamic environments where the players interact with the games and, commonly, also with other players. The players interactions have many types of relationships, both with other players (e.g., be friend, share games) and with games (e.g., buy, play, like); these relationships can be represented by social networks, i.e., in this context, a Social Network of Games (SNG). During a gameplay, the player produces a vast amount of data continuously: data that represents his/her experiences, preferences and behavioral patterns. In this way, it is possible to use these data to understand the players preferences, i.e., Player Modeling, and to improve the attractiveness of new games. However, this task requires the analysis of a vast amount of data, what is impracticable to do manually, then requiring robust algorithms of a research area named Knowledge Discovery in Databases (KDD) to overcome such an issue. It is possible to apply KDD techniques in data of a SNG to model the players, as well as to identify intrinsic features of the games. This MSc work aimed to explore a real SNG using KDD techniques for identifying common features among popular games, which may represent reasons why the games are popular. However, to achieve this goal, it is necessary to analyze games developed by non-influencer makers, because influencers may receive biased attention in their games that is not necessarily motivated by the game quality. First, we focused on detecting the game influencers to filter them out; empirical experiments show that our approach automatically detects influencers with high precision, even when using data from distinct nationalities for training and testing. Then, we performed a detailed analysis of games features, searching for object combinations that occur in the popular games developed by non-influencer makers, so to support game designers in the elaboration process of new games. This case study introduces a new design pattern for platform games. Also, we present an extensive analysis of object combinations that commonly occur in popular games. All experiments were performed on players and games from the worldwide well-known Super Mario Maker (Nintendo, Kyoto, Japan). |
publishDate |
2020 |
dc.date.none.fl_str_mv |
2020-05-08 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://www.teses.usp.br/teses/disponiveis/55/55134/tde-27072020-134224/ |
url |
https://www.teses.usp.br/teses/disponiveis/55/55134/tde-27072020-134224/ |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
|
dc.rights.driver.fl_str_mv |
Liberar o conteúdo para acesso público. info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Liberar o conteúdo para acesso público. |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.coverage.none.fl_str_mv |
|
dc.publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações da USP instname:Universidade de São Paulo (USP) instacron:USP |
instname_str |
Universidade de São Paulo (USP) |
instacron_str |
USP |
institution |
USP |
reponame_str |
Biblioteca Digital de Teses e Dissertações da USP |
collection |
Biblioteca Digital de Teses e Dissertações da USP |
repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP) |
repository.mail.fl_str_mv |
virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br |
_version_ |
1815257414800244736 |