Dinâmica de um condensado de Bose-Eintein contendo sólitons
Autor(a) principal: | |
---|---|
Data de Publicação: | 2015 |
Tipo de documento: | Dissertação |
Idioma: | por |
Título da fonte: | Biblioteca Digital de Teses e Dissertações da USP |
Texto Completo: | http://www.teses.usp.br/teses/disponiveis/76/76132/tde-02042015-170017/ |
Resumo: | Condensados de Bose-Einstein (BEC) são sistemas macroscópicos excelentes para a observação do comportamento quântico da matéria. Desde sua obtenção experimental em gases atômicos alcalinos diluídos aprisionados por campos magnéticos, há importantes aspectos relacionados a esse sistema que foram intensamente explorados, como os modos coletivos do BEC harmonicamente aprisionado, seu tunelamento através de barreiras de potencial e os estados excitados desse sistema, incluindo vórtice e sóliton. O último consiste de pacote de onda localizado, que propaga sem mudança de forma. Nesse trabalho, investigamos os novos aspectos que surgem da dinâmica de um sistema composto (condensado aprisionado contendo um sóliton). Há muitos estudos tratando cada parte separadamente: estado fundamental do BEC ou um sóliton em um BEC infinito uniforme estacionário. Estamos nos baseando nessas análises prévias, além da simulação numérica de campo médio do nosso sistema submetido a diferentes condições iniciais (BEC aprisionado no mínimo do potencial harmônico ou BEC deslocado na armadilha contendo um sóliton, além de uma deformação no potencial) para caracterizar a dinâmica desse sistema. Alguns dos nossos resultados puderam ser explicados por meio de predições analítica da chamada aproximação de Thomas-Fermi. Ao final, comparamos as simulações de campo médio (equação de Gross-Pitaevskii) com as advindas da teoria de múltiplos orbitais a fim de justificar o regime de validade da nossa teoria. |
id |
USP_583a2af6e05272ee9bdfc49a2c2b9d7b |
---|---|
oai_identifier_str |
oai:teses.usp.br:tde-02042015-170017 |
network_acronym_str |
USP |
network_name_str |
Biblioteca Digital de Teses e Dissertações da USP |
repository_id_str |
2721 |
spelling |
Dinâmica de um condensado de Bose-Eintein contendo sólitonsBose-Einstein condensate dynamics with solitonsÁtomos ultra-friosBose-Einstein condensateCondensado de Bose-EinsteinMatéria condensadaMatter wave solitonUltracold atomsCondensados de Bose-Einstein (BEC) são sistemas macroscópicos excelentes para a observação do comportamento quântico da matéria. Desde sua obtenção experimental em gases atômicos alcalinos diluídos aprisionados por campos magnéticos, há importantes aspectos relacionados a esse sistema que foram intensamente explorados, como os modos coletivos do BEC harmonicamente aprisionado, seu tunelamento através de barreiras de potencial e os estados excitados desse sistema, incluindo vórtice e sóliton. O último consiste de pacote de onda localizado, que propaga sem mudança de forma. Nesse trabalho, investigamos os novos aspectos que surgem da dinâmica de um sistema composto (condensado aprisionado contendo um sóliton). Há muitos estudos tratando cada parte separadamente: estado fundamental do BEC ou um sóliton em um BEC infinito uniforme estacionário. Estamos nos baseando nessas análises prévias, além da simulação numérica de campo médio do nosso sistema submetido a diferentes condições iniciais (BEC aprisionado no mínimo do potencial harmônico ou BEC deslocado na armadilha contendo um sóliton, além de uma deformação no potencial) para caracterizar a dinâmica desse sistema. Alguns dos nossos resultados puderam ser explicados por meio de predições analítica da chamada aproximação de Thomas-Fermi. Ao final, comparamos as simulações de campo médio (equação de Gross-Pitaevskii) com as advindas da teoria de múltiplos orbitais a fim de justificar o regime de validade da nossa teoria.Bose-Einstein Condensates (BEC) are excellent macroscopic systems to observe the quantum behavior of matter. Since it experimental production in dilute atomic alkali gases trapped by magnetic fields, there are important aspects related to this system that have been intensely explored, like the collective modes of the harmonically trapped BEC, its tunneling through a potential barrier and the excited states of this system, that include the vortex and soliton. The latter consist of localized disturbances, which propagate without change of form. In this work, we investigate the singular aspects that coming from the dynamics of a composite system (trapped BEC containing a soliton). There are many studies that treat each part separately, that include a fundamental state BEC or a soliton inside a uniform infinite extent stationary BEC. We are basing on these previous analyses, besides mean-field numeric simulating our particular system submitted to diferent initial conditions (minimum harmonic potential trapped BEC or dislocated trapped BEC plus a soliton, in addition to a deformation in the potential) to characterize the tunneling dynamics. Some of our results could be explained using analytical predictions of the so called Thomas-Fermi approximation. At the end, we compar the meanfield simulations (Gross-Pitavskii equation) with the simulations from the multiple orbitals theory to justify the validity regime of our theory.Biblioteca Digitais de Teses e Dissertações da USPBagnato, Vanderlei SalvadorSmaira, André de Freitas2015-02-05info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://www.teses.usp.br/teses/disponiveis/76/76132/tde-02042015-170017/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesspor2016-07-28T16:11:56Zoai:teses.usp.br:tde-02042015-170017Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212016-07-28T16:11:56Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false |
dc.title.none.fl_str_mv |
Dinâmica de um condensado de Bose-Eintein contendo sólitons Bose-Einstein condensate dynamics with solitons |
title |
Dinâmica de um condensado de Bose-Eintein contendo sólitons |
spellingShingle |
Dinâmica de um condensado de Bose-Eintein contendo sólitons Smaira, André de Freitas Átomos ultra-frios Bose-Einstein condensate Condensado de Bose-Einstein Matéria condensada Matter wave soliton Ultracold atoms |
title_short |
Dinâmica de um condensado de Bose-Eintein contendo sólitons |
title_full |
Dinâmica de um condensado de Bose-Eintein contendo sólitons |
title_fullStr |
Dinâmica de um condensado de Bose-Eintein contendo sólitons |
title_full_unstemmed |
Dinâmica de um condensado de Bose-Eintein contendo sólitons |
title_sort |
Dinâmica de um condensado de Bose-Eintein contendo sólitons |
author |
Smaira, André de Freitas |
author_facet |
Smaira, André de Freitas |
author_role |
author |
dc.contributor.none.fl_str_mv |
Bagnato, Vanderlei Salvador |
dc.contributor.author.fl_str_mv |
Smaira, André de Freitas |
dc.subject.por.fl_str_mv |
Átomos ultra-frios Bose-Einstein condensate Condensado de Bose-Einstein Matéria condensada Matter wave soliton Ultracold atoms |
topic |
Átomos ultra-frios Bose-Einstein condensate Condensado de Bose-Einstein Matéria condensada Matter wave soliton Ultracold atoms |
description |
Condensados de Bose-Einstein (BEC) são sistemas macroscópicos excelentes para a observação do comportamento quântico da matéria. Desde sua obtenção experimental em gases atômicos alcalinos diluídos aprisionados por campos magnéticos, há importantes aspectos relacionados a esse sistema que foram intensamente explorados, como os modos coletivos do BEC harmonicamente aprisionado, seu tunelamento através de barreiras de potencial e os estados excitados desse sistema, incluindo vórtice e sóliton. O último consiste de pacote de onda localizado, que propaga sem mudança de forma. Nesse trabalho, investigamos os novos aspectos que surgem da dinâmica de um sistema composto (condensado aprisionado contendo um sóliton). Há muitos estudos tratando cada parte separadamente: estado fundamental do BEC ou um sóliton em um BEC infinito uniforme estacionário. Estamos nos baseando nessas análises prévias, além da simulação numérica de campo médio do nosso sistema submetido a diferentes condições iniciais (BEC aprisionado no mínimo do potencial harmônico ou BEC deslocado na armadilha contendo um sóliton, além de uma deformação no potencial) para caracterizar a dinâmica desse sistema. Alguns dos nossos resultados puderam ser explicados por meio de predições analítica da chamada aproximação de Thomas-Fermi. Ao final, comparamos as simulações de campo médio (equação de Gross-Pitaevskii) com as advindas da teoria de múltiplos orbitais a fim de justificar o regime de validade da nossa teoria. |
publishDate |
2015 |
dc.date.none.fl_str_mv |
2015-02-05 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://www.teses.usp.br/teses/disponiveis/76/76132/tde-02042015-170017/ |
url |
http://www.teses.usp.br/teses/disponiveis/76/76132/tde-02042015-170017/ |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.relation.none.fl_str_mv |
|
dc.rights.driver.fl_str_mv |
Liberar o conteúdo para acesso público. info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Liberar o conteúdo para acesso público. |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.coverage.none.fl_str_mv |
|
dc.publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações da USP instname:Universidade de São Paulo (USP) instacron:USP |
instname_str |
Universidade de São Paulo (USP) |
instacron_str |
USP |
institution |
USP |
reponame_str |
Biblioteca Digital de Teses e Dissertações da USP |
collection |
Biblioteca Digital de Teses e Dissertações da USP |
repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP) |
repository.mail.fl_str_mv |
virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br |
_version_ |
1815256603021017088 |