Otimização de parâmetros para modelos baseados no conceito de contribuição de grupos aplicado ao cálculo de viscosidade de misturas não ideais
Autor(a) principal: | |
---|---|
Data de Publicação: | 2019 |
Tipo de documento: | Tese |
Idioma: | por |
Título da fonte: | Biblioteca Digital de Teses e Dissertações da USP |
Texto Completo: | http://www.teses.usp.br/teses/disponiveis/74/74132/tde-02122019-094026/ |
Resumo: | Os modelos preditivos de viscosidade UNIFAC-VISCO e GC-UNIMOD são baseados na teoria da contribuição de grupos, ou seja, dependem da determinação dos parâmetros de interação de grupos para ter sua aplicação viabilizada. Este trabalho teve como objetivo criar um banco de dados diferenciado (com diversas funções orgânicas), para nova otimização dos parâmetros de interação para os modelos supracitados. O banco de dados e os modelos foram implementados em linguagem SQL e Python, respectivamente. Os parâmetros de interação de grupos obtidos para o modelo UNIFAC-VISCO apresentaram desvios médios relativos (DMR) inferiores a 4,27 e 6,88 % quando utilizados na predição de misturas de óleos essenciais e misturas reais de ésteres, respectivamente. Todavia, para predição de sistemas modelo de óleos vegetais, os parâmetros apresentaram DMR de 25,33 %. Para o modelo GC-UNIMOD os parâmetros obtidos apresentaram DMR de 3,41 e 4,64 % quando preditas misturas de óleos essenciais e misturas reais de ésteres, respectivamente. Os modelos estudados podem ser utilizados de forma satisfatória para predição de viscosidade de misturas de óleos essenciais, álcoois, ésteres e óleos vegetais, sendo os parâmetros globais do modelo GC-UNIMOD os mais versáteis e com boa capacidade preditiva. Uma Rede Neural Artificial (RNA) foi criada como alternativa para predição de viscosidade dos sistemas incluídos neste trabalho. A RNA apresentou Mean Absolute Percentage Error (MAPE) de 11,99 % para dados de teste, comprovando ser uma excelente alternativa para predição de viscosidades. Uma interface gráfica, disponibilizada via internet, foi desenvolvida a fim de disponibilizar as ferramentas desenvolvidas neste trabalho para a comunidade científica e também possibilitar predições com os parâmetros de interação de grupos obtidos para os modelos estudados. |
id |
USP_5865d0414d6919cbc7a485f51d91e866 |
---|---|
oai_identifier_str |
oai:teses.usp.br:tde-02122019-094026 |
network_acronym_str |
USP |
network_name_str |
Biblioteca Digital de Teses e Dissertações da USP |
repository_id_str |
2721 |
spelling |
Otimização de parâmetros para modelos baseados no conceito de contribuição de grupos aplicado ao cálculo de viscosidade de misturas não ideaisOptimization of parameters for models based on the concept of group contribution applied to the calculation of viscosity of non-ideal mixturesBiodieselBiodieselEssencial oilsGC-UNIMODGC-UNIMODÓleos essenciaisÓleos vegetaisUNIFAC-VISCOUNIFAC-VISCOVegetable oilsOs modelos preditivos de viscosidade UNIFAC-VISCO e GC-UNIMOD são baseados na teoria da contribuição de grupos, ou seja, dependem da determinação dos parâmetros de interação de grupos para ter sua aplicação viabilizada. Este trabalho teve como objetivo criar um banco de dados diferenciado (com diversas funções orgânicas), para nova otimização dos parâmetros de interação para os modelos supracitados. O banco de dados e os modelos foram implementados em linguagem SQL e Python, respectivamente. Os parâmetros de interação de grupos obtidos para o modelo UNIFAC-VISCO apresentaram desvios médios relativos (DMR) inferiores a 4,27 e 6,88 % quando utilizados na predição de misturas de óleos essenciais e misturas reais de ésteres, respectivamente. Todavia, para predição de sistemas modelo de óleos vegetais, os parâmetros apresentaram DMR de 25,33 %. Para o modelo GC-UNIMOD os parâmetros obtidos apresentaram DMR de 3,41 e 4,64 % quando preditas misturas de óleos essenciais e misturas reais de ésteres, respectivamente. Os modelos estudados podem ser utilizados de forma satisfatória para predição de viscosidade de misturas de óleos essenciais, álcoois, ésteres e óleos vegetais, sendo os parâmetros globais do modelo GC-UNIMOD os mais versáteis e com boa capacidade preditiva. Uma Rede Neural Artificial (RNA) foi criada como alternativa para predição de viscosidade dos sistemas incluídos neste trabalho. A RNA apresentou Mean Absolute Percentage Error (MAPE) de 11,99 % para dados de teste, comprovando ser uma excelente alternativa para predição de viscosidades. Uma interface gráfica, disponibilizada via internet, foi desenvolvida a fim de disponibilizar as ferramentas desenvolvidas neste trabalho para a comunidade científica e também possibilitar predições com os parâmetros de interação de grupos obtidos para os modelos estudados.The predictive models of viscosity UNIFAC-VISCO and GC-UNIMOD are based on the theory of group contribution, i.e., they depend on determining interaction parameters to enable its application. The objective of this work was to create a groundbreaking database (with several organic functions) for a new optimization of interaction parameters for aforementioned models. Database and models were implemented in SQL and Python, respectively. Group interaction parameters obtained for UNIFAC-VISCO showed average relative deviations (ARD) lower than 4.27 and 6.88 % when used to predict essential oils mixtures and real ester mixtures, respectively. However, to predict vegetable oil model systems, the parameters had ARD of 25.33 %. For GC-UNIMOD best fitting parameters showed ARDs lower than 3.41 and 4.64 % when predicting essential oils mixtures and real ester mixtures, respectively. UNIFAC-VISCO and GC-UNIMOD models can be satisfactorily used to predict viscosity of mixtures of essential oils, alcohols, esters and vegetable oils, with overall parameters of GC-UNIMOD model being the most versatile as well as with good predictive capacity. An ANN (artificial neural network) was created as an alternative for viscosity prediction of fatty systems. The network presented MAPE (Mean Absolute Percentage Error) of 11.99 % for test data, proving to be an excellent alternative for predicting viscosities. A graphical interface, available on internet, was developed to provide access to the scientific community to tools made and also enable predictions with the group interaction parameters obtained for the models studied.Biblioteca Digitais de Teses e Dissertações da USPGonçalves, Cintia BernardoPinto, Camila Nardi2019-08-12info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfhttp://www.teses.usp.br/teses/disponiveis/74/74132/tde-02122019-094026/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesspor2019-12-11T16:33:01Zoai:teses.usp.br:tde-02122019-094026Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212019-12-11T16:33:01Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false |
dc.title.none.fl_str_mv |
Otimização de parâmetros para modelos baseados no conceito de contribuição de grupos aplicado ao cálculo de viscosidade de misturas não ideais Optimization of parameters for models based on the concept of group contribution applied to the calculation of viscosity of non-ideal mixtures |
title |
Otimização de parâmetros para modelos baseados no conceito de contribuição de grupos aplicado ao cálculo de viscosidade de misturas não ideais |
spellingShingle |
Otimização de parâmetros para modelos baseados no conceito de contribuição de grupos aplicado ao cálculo de viscosidade de misturas não ideais Pinto, Camila Nardi Biodiesel Biodiesel Essencial oils GC-UNIMOD GC-UNIMOD Óleos essenciais Óleos vegetais UNIFAC-VISCO UNIFAC-VISCO Vegetable oils |
title_short |
Otimização de parâmetros para modelos baseados no conceito de contribuição de grupos aplicado ao cálculo de viscosidade de misturas não ideais |
title_full |
Otimização de parâmetros para modelos baseados no conceito de contribuição de grupos aplicado ao cálculo de viscosidade de misturas não ideais |
title_fullStr |
Otimização de parâmetros para modelos baseados no conceito de contribuição de grupos aplicado ao cálculo de viscosidade de misturas não ideais |
title_full_unstemmed |
Otimização de parâmetros para modelos baseados no conceito de contribuição de grupos aplicado ao cálculo de viscosidade de misturas não ideais |
title_sort |
Otimização de parâmetros para modelos baseados no conceito de contribuição de grupos aplicado ao cálculo de viscosidade de misturas não ideais |
author |
Pinto, Camila Nardi |
author_facet |
Pinto, Camila Nardi |
author_role |
author |
dc.contributor.none.fl_str_mv |
Gonçalves, Cintia Bernardo |
dc.contributor.author.fl_str_mv |
Pinto, Camila Nardi |
dc.subject.por.fl_str_mv |
Biodiesel Biodiesel Essencial oils GC-UNIMOD GC-UNIMOD Óleos essenciais Óleos vegetais UNIFAC-VISCO UNIFAC-VISCO Vegetable oils |
topic |
Biodiesel Biodiesel Essencial oils GC-UNIMOD GC-UNIMOD Óleos essenciais Óleos vegetais UNIFAC-VISCO UNIFAC-VISCO Vegetable oils |
description |
Os modelos preditivos de viscosidade UNIFAC-VISCO e GC-UNIMOD são baseados na teoria da contribuição de grupos, ou seja, dependem da determinação dos parâmetros de interação de grupos para ter sua aplicação viabilizada. Este trabalho teve como objetivo criar um banco de dados diferenciado (com diversas funções orgânicas), para nova otimização dos parâmetros de interação para os modelos supracitados. O banco de dados e os modelos foram implementados em linguagem SQL e Python, respectivamente. Os parâmetros de interação de grupos obtidos para o modelo UNIFAC-VISCO apresentaram desvios médios relativos (DMR) inferiores a 4,27 e 6,88 % quando utilizados na predição de misturas de óleos essenciais e misturas reais de ésteres, respectivamente. Todavia, para predição de sistemas modelo de óleos vegetais, os parâmetros apresentaram DMR de 25,33 %. Para o modelo GC-UNIMOD os parâmetros obtidos apresentaram DMR de 3,41 e 4,64 % quando preditas misturas de óleos essenciais e misturas reais de ésteres, respectivamente. Os modelos estudados podem ser utilizados de forma satisfatória para predição de viscosidade de misturas de óleos essenciais, álcoois, ésteres e óleos vegetais, sendo os parâmetros globais do modelo GC-UNIMOD os mais versáteis e com boa capacidade preditiva. Uma Rede Neural Artificial (RNA) foi criada como alternativa para predição de viscosidade dos sistemas incluídos neste trabalho. A RNA apresentou Mean Absolute Percentage Error (MAPE) de 11,99 % para dados de teste, comprovando ser uma excelente alternativa para predição de viscosidades. Uma interface gráfica, disponibilizada via internet, foi desenvolvida a fim de disponibilizar as ferramentas desenvolvidas neste trabalho para a comunidade científica e também possibilitar predições com os parâmetros de interação de grupos obtidos para os modelos estudados. |
publishDate |
2019 |
dc.date.none.fl_str_mv |
2019-08-12 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
format |
doctoralThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://www.teses.usp.br/teses/disponiveis/74/74132/tde-02122019-094026/ |
url |
http://www.teses.usp.br/teses/disponiveis/74/74132/tde-02122019-094026/ |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.relation.none.fl_str_mv |
|
dc.rights.driver.fl_str_mv |
Liberar o conteúdo para acesso público. info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Liberar o conteúdo para acesso público. |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.coverage.none.fl_str_mv |
|
dc.publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações da USP instname:Universidade de São Paulo (USP) instacron:USP |
instname_str |
Universidade de São Paulo (USP) |
instacron_str |
USP |
institution |
USP |
reponame_str |
Biblioteca Digital de Teses e Dissertações da USP |
collection |
Biblioteca Digital de Teses e Dissertações da USP |
repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP) |
repository.mail.fl_str_mv |
virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br |
_version_ |
1815256623571009536 |