Spectral radius of weighted endomorphisms with applications on generalized countable Markov shifts
Autor(a) principal: | |
---|---|
Data de Publicação: | 2024 |
Tipo de documento: | Dissertação |
Idioma: | eng |
Título da fonte: | Biblioteca Digital de Teses e Dissertações da USP |
Texto Completo: | https://www.teses.usp.br/teses/disponiveis/45/45131/tde-18092024-174119/ |
Resumo: | This thesis is divided into two parts. In the first part, we consider an endomorphism \\alpha: A \\to A, with A being a commutative Banach algebra with unity, and X the spectrum of A. We ensure the existence of a unique partial dynamical system \\varphi: \\Delta \\subseteq X \\to X associated with the endomorphism. By adding the condition that A is a uniform algebra, we obtain an expression for the spectral radius of the weighted endomorphisms a\\alpha, a \\in A, which depends on the invariant or ergodic probabilities measures of the partial dynamical system (X, \\varphi). Moreover, this spectral radius will coincide with the spectral radius of the weighted shift operators aT, where \\alpha(a) = TaS for some operator S. In the second part of the project, for the shift operator \\sigma: \\Delta \\to X_A, where X_A is a generalized Markov shift space, we identify a *-endomorphism \\alpha: \\mathcal_A \\to \\mathcal_A associated with (X_A, \\sigma), where \\mathcal_A is the algebra whose spectrum is X_A. We give examples under conditions that guarantee the continuous extension of the shift operator and other examples where we show the impossibility of extending the shift operator continuously over the entire space. For the particular case of the renewal shift, we characterize every element of the algebra and provide an explicit formula to calculate r(a\\alpha) for all a \\in \\mathcal_A. |
id |
USP_593354f1c837674658be54e09478f970 |
---|---|
oai_identifier_str |
oai:teses.usp.br:tde-18092024-174119 |
network_acronym_str |
USP |
network_name_str |
Biblioteca Digital de Teses e Dissertações da USP |
repository_id_str |
2721 |
spelling |
Spectral radius of weighted endomorphisms with applications on generalized countable Markov shiftsRaio espectral de endomorfismos ponderados com aplicações em shifts de Markov generalizados com alfabeto enumerávelEndomorfismos ponderadosGeneralized countable Markov shiftOperadores shifts ponderadosRaio espectralShifts de Markov generalizados com alfabeto enumerávelSpectral radiusWeighted endomorphismsWeighted shifts operatorsThis thesis is divided into two parts. In the first part, we consider an endomorphism \\alpha: A \\to A, with A being a commutative Banach algebra with unity, and X the spectrum of A. We ensure the existence of a unique partial dynamical system \\varphi: \\Delta \\subseteq X \\to X associated with the endomorphism. By adding the condition that A is a uniform algebra, we obtain an expression for the spectral radius of the weighted endomorphisms a\\alpha, a \\in A, which depends on the invariant or ergodic probabilities measures of the partial dynamical system (X, \\varphi). Moreover, this spectral radius will coincide with the spectral radius of the weighted shift operators aT, where \\alpha(a) = TaS for some operator S. In the second part of the project, for the shift operator \\sigma: \\Delta \\to X_A, where X_A is a generalized Markov shift space, we identify a *-endomorphism \\alpha: \\mathcal_A \\to \\mathcal_A associated with (X_A, \\sigma), where \\mathcal_A is the algebra whose spectrum is X_A. We give examples under conditions that guarantee the continuous extension of the shift operator and other examples where we show the impossibility of extending the shift operator continuously over the entire space. For the particular case of the renewal shift, we characterize every element of the algebra and provide an explicit formula to calculate r(a\\alpha) for all a \\in \\mathcal_A.Esta dissertação está dividida em duas partes. Na primeira parte, consideramos um endomorfismo \\alpha: A \\to A, com A sendo uma álgebra de Banach comutativa com unidade, e X o espectro de A. Asseguramos a existência de um sistema dinâmico parcial único \\varphi: \\Delta \\subseteq X \\to X, que está associado ao endomorfismo. Adicionando a condição de que A seja uma álgebra uniforme, obtemos uma expressão para o raio espectral dos endomorfismos ponderados a\\alpha, com a \\in A, que depende das medidas de probabilidade invariantes ou ergódicas do sistema dinâmico parcial (X, \\varphi). Além disso, esse raio espectral coincidirá com o raio espectral dos operadores shift ponderados aT, onde \\alpha(a) = TaS para algum operador S. Na segunda parte do projeto, para o operador shift \\sigma: \\Delta \\to X_A, onde X_A é um espaço de shift de Markov generalizado, encontramos um *-endomorfismo \\alpha: \\mathcal_A \\to \\mathcal_A associado a (X_A, \\sigma), onde \\mathcal_A é a álgebra cujo espectro é X_A. Damos exemplos sob condições que garantem a extensão contínua do operador shift e outros exemplos onde mostramos a impossibilidade de estender o operador shift de forma contínua em todo o espaço. Para o caso particular do renewal shift, caracterizamos cada elemento da álgebra e fornecemos uma fórmula explícita para calcular r(a\\alpha) para todo a \\in \\mathcal_A.Biblioteca Digitais de Teses e Dissertações da USPProença, Rodrigo BissacotRodriguez, Ivan Francisco Diaz Granados2024-07-18info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttps://www.teses.usp.br/teses/disponiveis/45/45131/tde-18092024-174119/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesseng2024-10-14T16:49:02Zoai:teses.usp.br:tde-18092024-174119Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212024-10-14T16:49:02Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false |
dc.title.none.fl_str_mv |
Spectral radius of weighted endomorphisms with applications on generalized countable Markov shifts Raio espectral de endomorfismos ponderados com aplicações em shifts de Markov generalizados com alfabeto enumerável |
title |
Spectral radius of weighted endomorphisms with applications on generalized countable Markov shifts |
spellingShingle |
Spectral radius of weighted endomorphisms with applications on generalized countable Markov shifts Rodriguez, Ivan Francisco Diaz Granados Endomorfismos ponderados Generalized countable Markov shift Operadores shifts ponderados Raio espectral Shifts de Markov generalizados com alfabeto enumerável Spectral radius Weighted endomorphisms Weighted shifts operators |
title_short |
Spectral radius of weighted endomorphisms with applications on generalized countable Markov shifts |
title_full |
Spectral radius of weighted endomorphisms with applications on generalized countable Markov shifts |
title_fullStr |
Spectral radius of weighted endomorphisms with applications on generalized countable Markov shifts |
title_full_unstemmed |
Spectral radius of weighted endomorphisms with applications on generalized countable Markov shifts |
title_sort |
Spectral radius of weighted endomorphisms with applications on generalized countable Markov shifts |
author |
Rodriguez, Ivan Francisco Diaz Granados |
author_facet |
Rodriguez, Ivan Francisco Diaz Granados |
author_role |
author |
dc.contributor.none.fl_str_mv |
Proença, Rodrigo Bissacot |
dc.contributor.author.fl_str_mv |
Rodriguez, Ivan Francisco Diaz Granados |
dc.subject.por.fl_str_mv |
Endomorfismos ponderados Generalized countable Markov shift Operadores shifts ponderados Raio espectral Shifts de Markov generalizados com alfabeto enumerável Spectral radius Weighted endomorphisms Weighted shifts operators |
topic |
Endomorfismos ponderados Generalized countable Markov shift Operadores shifts ponderados Raio espectral Shifts de Markov generalizados com alfabeto enumerável Spectral radius Weighted endomorphisms Weighted shifts operators |
description |
This thesis is divided into two parts. In the first part, we consider an endomorphism \\alpha: A \\to A, with A being a commutative Banach algebra with unity, and X the spectrum of A. We ensure the existence of a unique partial dynamical system \\varphi: \\Delta \\subseteq X \\to X associated with the endomorphism. By adding the condition that A is a uniform algebra, we obtain an expression for the spectral radius of the weighted endomorphisms a\\alpha, a \\in A, which depends on the invariant or ergodic probabilities measures of the partial dynamical system (X, \\varphi). Moreover, this spectral radius will coincide with the spectral radius of the weighted shift operators aT, where \\alpha(a) = TaS for some operator S. In the second part of the project, for the shift operator \\sigma: \\Delta \\to X_A, where X_A is a generalized Markov shift space, we identify a *-endomorphism \\alpha: \\mathcal_A \\to \\mathcal_A associated with (X_A, \\sigma), where \\mathcal_A is the algebra whose spectrum is X_A. We give examples under conditions that guarantee the continuous extension of the shift operator and other examples where we show the impossibility of extending the shift operator continuously over the entire space. For the particular case of the renewal shift, we characterize every element of the algebra and provide an explicit formula to calculate r(a\\alpha) for all a \\in \\mathcal_A. |
publishDate |
2024 |
dc.date.none.fl_str_mv |
2024-07-18 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://www.teses.usp.br/teses/disponiveis/45/45131/tde-18092024-174119/ |
url |
https://www.teses.usp.br/teses/disponiveis/45/45131/tde-18092024-174119/ |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
|
dc.rights.driver.fl_str_mv |
Liberar o conteúdo para acesso público. info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Liberar o conteúdo para acesso público. |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.coverage.none.fl_str_mv |
|
dc.publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações da USP instname:Universidade de São Paulo (USP) instacron:USP |
instname_str |
Universidade de São Paulo (USP) |
instacron_str |
USP |
institution |
USP |
reponame_str |
Biblioteca Digital de Teses e Dissertações da USP |
collection |
Biblioteca Digital de Teses e Dissertações da USP |
repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP) |
repository.mail.fl_str_mv |
virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br |
_version_ |
1815256518026592256 |