Spectral radius of weighted endomorphisms with applications on generalized countable Markov shifts

Detalhes bibliográficos
Autor(a) principal: Rodriguez, Ivan Francisco Diaz Granados
Data de Publicação: 2024
Tipo de documento: Dissertação
Idioma: eng
Título da fonte: Biblioteca Digital de Teses e Dissertações da USP
Texto Completo: https://www.teses.usp.br/teses/disponiveis/45/45131/tde-18092024-174119/
Resumo: This thesis is divided into two parts. In the first part, we consider an endomorphism \\alpha: A \\to A, with A being a commutative Banach algebra with unity, and X the spectrum of A. We ensure the existence of a unique partial dynamical system \\varphi: \\Delta \\subseteq X \\to X associated with the endomorphism. By adding the condition that A is a uniform algebra, we obtain an expression for the spectral radius of the weighted endomorphisms a\\alpha, a \\in A, which depends on the invariant or ergodic probabilities measures of the partial dynamical system (X, \\varphi). Moreover, this spectral radius will coincide with the spectral radius of the weighted shift operators aT, where \\alpha(a) = TaS for some operator S. In the second part of the project, for the shift operator \\sigma: \\Delta \\to X_A, where X_A is a generalized Markov shift space, we identify a *-endomorphism \\alpha: \\mathcal_A \\to \\mathcal_A associated with (X_A, \\sigma), where \\mathcal_A is the algebra whose spectrum is X_A. We give examples under conditions that guarantee the continuous extension of the shift operator and other examples where we show the impossibility of extending the shift operator continuously over the entire space. For the particular case of the renewal shift, we characterize every element of the algebra and provide an explicit formula to calculate r(a\\alpha) for all a \\in \\mathcal_A.
id USP_593354f1c837674658be54e09478f970
oai_identifier_str oai:teses.usp.br:tde-18092024-174119
network_acronym_str USP
network_name_str Biblioteca Digital de Teses e Dissertações da USP
repository_id_str 2721
spelling Spectral radius of weighted endomorphisms with applications on generalized countable Markov shiftsRaio espectral de endomorfismos ponderados com aplicações em shifts de Markov generalizados com alfabeto enumerávelEndomorfismos ponderadosGeneralized countable Markov shiftOperadores shifts ponderadosRaio espectralShifts de Markov generalizados com alfabeto enumerávelSpectral radiusWeighted endomorphismsWeighted shifts operatorsThis thesis is divided into two parts. In the first part, we consider an endomorphism \\alpha: A \\to A, with A being a commutative Banach algebra with unity, and X the spectrum of A. We ensure the existence of a unique partial dynamical system \\varphi: \\Delta \\subseteq X \\to X associated with the endomorphism. By adding the condition that A is a uniform algebra, we obtain an expression for the spectral radius of the weighted endomorphisms a\\alpha, a \\in A, which depends on the invariant or ergodic probabilities measures of the partial dynamical system (X, \\varphi). Moreover, this spectral radius will coincide with the spectral radius of the weighted shift operators aT, where \\alpha(a) = TaS for some operator S. In the second part of the project, for the shift operator \\sigma: \\Delta \\to X_A, where X_A is a generalized Markov shift space, we identify a *-endomorphism \\alpha: \\mathcal_A \\to \\mathcal_A associated with (X_A, \\sigma), where \\mathcal_A is the algebra whose spectrum is X_A. We give examples under conditions that guarantee the continuous extension of the shift operator and other examples where we show the impossibility of extending the shift operator continuously over the entire space. For the particular case of the renewal shift, we characterize every element of the algebra and provide an explicit formula to calculate r(a\\alpha) for all a \\in \\mathcal_A.Esta dissertação está dividida em duas partes. Na primeira parte, consideramos um endomorfismo \\alpha: A \\to A, com A sendo uma álgebra de Banach comutativa com unidade, e X o espectro de A. Asseguramos a existência de um sistema dinâmico parcial único \\varphi: \\Delta \\subseteq X \\to X, que está associado ao endomorfismo. Adicionando a condição de que A seja uma álgebra uniforme, obtemos uma expressão para o raio espectral dos endomorfismos ponderados a\\alpha, com a \\in A, que depende das medidas de probabilidade invariantes ou ergódicas do sistema dinâmico parcial (X, \\varphi). Além disso, esse raio espectral coincidirá com o raio espectral dos operadores shift ponderados aT, onde \\alpha(a) = TaS para algum operador S. Na segunda parte do projeto, para o operador shift \\sigma: \\Delta \\to X_A, onde X_A é um espaço de shift de Markov generalizado, encontramos um *-endomorfismo \\alpha: \\mathcal_A \\to \\mathcal_A associado a (X_A, \\sigma), onde \\mathcal_A é a álgebra cujo espectro é X_A. Damos exemplos sob condições que garantem a extensão contínua do operador shift e outros exemplos onde mostramos a impossibilidade de estender o operador shift de forma contínua em todo o espaço. Para o caso particular do renewal shift, caracterizamos cada elemento da álgebra e fornecemos uma fórmula explícita para calcular r(a\\alpha) para todo a \\in \\mathcal_A.Biblioteca Digitais de Teses e Dissertações da USPProença, Rodrigo BissacotRodriguez, Ivan Francisco Diaz Granados2024-07-18info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttps://www.teses.usp.br/teses/disponiveis/45/45131/tde-18092024-174119/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesseng2024-10-14T16:49:02Zoai:teses.usp.br:tde-18092024-174119Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212024-10-14T16:49:02Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false
dc.title.none.fl_str_mv Spectral radius of weighted endomorphisms with applications on generalized countable Markov shifts
Raio espectral de endomorfismos ponderados com aplicações em shifts de Markov generalizados com alfabeto enumerável
title Spectral radius of weighted endomorphisms with applications on generalized countable Markov shifts
spellingShingle Spectral radius of weighted endomorphisms with applications on generalized countable Markov shifts
Rodriguez, Ivan Francisco Diaz Granados
Endomorfismos ponderados
Generalized countable Markov shift
Operadores shifts ponderados
Raio espectral
Shifts de Markov generalizados com alfabeto enumerável
Spectral radius
Weighted endomorphisms
Weighted shifts operators
title_short Spectral radius of weighted endomorphisms with applications on generalized countable Markov shifts
title_full Spectral radius of weighted endomorphisms with applications on generalized countable Markov shifts
title_fullStr Spectral radius of weighted endomorphisms with applications on generalized countable Markov shifts
title_full_unstemmed Spectral radius of weighted endomorphisms with applications on generalized countable Markov shifts
title_sort Spectral radius of weighted endomorphisms with applications on generalized countable Markov shifts
author Rodriguez, Ivan Francisco Diaz Granados
author_facet Rodriguez, Ivan Francisco Diaz Granados
author_role author
dc.contributor.none.fl_str_mv Proença, Rodrigo Bissacot
dc.contributor.author.fl_str_mv Rodriguez, Ivan Francisco Diaz Granados
dc.subject.por.fl_str_mv Endomorfismos ponderados
Generalized countable Markov shift
Operadores shifts ponderados
Raio espectral
Shifts de Markov generalizados com alfabeto enumerável
Spectral radius
Weighted endomorphisms
Weighted shifts operators
topic Endomorfismos ponderados
Generalized countable Markov shift
Operadores shifts ponderados
Raio espectral
Shifts de Markov generalizados com alfabeto enumerável
Spectral radius
Weighted endomorphisms
Weighted shifts operators
description This thesis is divided into two parts. In the first part, we consider an endomorphism \\alpha: A \\to A, with A being a commutative Banach algebra with unity, and X the spectrum of A. We ensure the existence of a unique partial dynamical system \\varphi: \\Delta \\subseteq X \\to X associated with the endomorphism. By adding the condition that A is a uniform algebra, we obtain an expression for the spectral radius of the weighted endomorphisms a\\alpha, a \\in A, which depends on the invariant or ergodic probabilities measures of the partial dynamical system (X, \\varphi). Moreover, this spectral radius will coincide with the spectral radius of the weighted shift operators aT, where \\alpha(a) = TaS for some operator S. In the second part of the project, for the shift operator \\sigma: \\Delta \\to X_A, where X_A is a generalized Markov shift space, we identify a *-endomorphism \\alpha: \\mathcal_A \\to \\mathcal_A associated with (X_A, \\sigma), where \\mathcal_A is the algebra whose spectrum is X_A. We give examples under conditions that guarantee the continuous extension of the shift operator and other examples where we show the impossibility of extending the shift operator continuously over the entire space. For the particular case of the renewal shift, we characterize every element of the algebra and provide an explicit formula to calculate r(a\\alpha) for all a \\in \\mathcal_A.
publishDate 2024
dc.date.none.fl_str_mv 2024-07-18
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://www.teses.usp.br/teses/disponiveis/45/45131/tde-18092024-174119/
url https://www.teses.usp.br/teses/disponiveis/45/45131/tde-18092024-174119/
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv
dc.rights.driver.fl_str_mv Liberar o conteúdo para acesso público.
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Liberar o conteúdo para acesso público.
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.coverage.none.fl_str_mv
dc.publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
dc.source.none.fl_str_mv
reponame:Biblioteca Digital de Teses e Dissertações da USP
instname:Universidade de São Paulo (USP)
instacron:USP
instname_str Universidade de São Paulo (USP)
instacron_str USP
institution USP
reponame_str Biblioteca Digital de Teses e Dissertações da USP
collection Biblioteca Digital de Teses e Dissertações da USP
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)
repository.mail.fl_str_mv virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br
_version_ 1815256518026592256