Teoria de bifurcação para equações diferenciais ordinárias generalizadas e aplicações às equações diferenciais ordinárias

Detalhes bibliográficos
Autor(a) principal: Macena, Maria Carolina Stefani Mesquita
Data de Publicação: 2013
Tipo de documento: Dissertação
Idioma: por
Título da fonte: Biblioteca Digital de Teses e Dissertações da USP
Texto Completo: http://www.teses.usp.br/teses/disponiveis/55/55135/tde-29012014-162300/
Resumo: Neste trabalho, estudamos a teoria de bifurcação para equações diferenciais ordinárias (escrevemos simplesmente EDOs), bem como a existência de ponto de bifurcação para soluções periódicas destas equações. Em seguida, desenvolvemos a teoria, até então inexistente, sobre bifurcação para equações diferenciais ordinárias generalizadas (EDOs generalizadas). Neste desenvolvimento, obtivemos para EDOs generalizadas, um resultado sobre existência de ponto de bifurcação para soluções periódicas. Em seguida, através da correspondência entre EDOs e EDOs generalizadas, obtivemos novos resultados sobre a existência de ponto de bifurcação para soluções periódicas para EDOs clássicas, agora sob a ótica das EDOs generalizadas, quando então, em vez de funções continuamente diferenciáveis, necessitamos, apenas, que as funções envolvidas na EDO sejam integráveis no sentido de Kurzweil-Henstock. Adicionamos, também, um resultado sobre a existência de soluções periódicas de EDOs generalizadas e aplicamos tal resultado para EDOs. A fim de obtermos os resultados que pretendíamos, utilizamos a teoria do grau coincidente. Finalmente, mencionamos que os resultados inéditos deste trabalho estão contidos em [6]
id USP_5a6049eef4f913109c25c1dbea44f27f
oai_identifier_str oai:teses.usp.br:tde-29012014-162300
network_acronym_str USP
network_name_str Biblioteca Digital de Teses e Dissertações da USP
repository_id_str 2721
spelling Teoria de bifurcação para equações diferenciais ordinárias generalizadas e aplicações às equações diferenciais ordináriasBifurcation theory for generalized ordinary differential equations and applications to ordinary differential equationsBifurcaçãoBifurcationPeriodic solutionsSoluções periódicasNeste trabalho, estudamos a teoria de bifurcação para equações diferenciais ordinárias (escrevemos simplesmente EDOs), bem como a existência de ponto de bifurcação para soluções periódicas destas equações. Em seguida, desenvolvemos a teoria, até então inexistente, sobre bifurcação para equações diferenciais ordinárias generalizadas (EDOs generalizadas). Neste desenvolvimento, obtivemos para EDOs generalizadas, um resultado sobre existência de ponto de bifurcação para soluções periódicas. Em seguida, através da correspondência entre EDOs e EDOs generalizadas, obtivemos novos resultados sobre a existência de ponto de bifurcação para soluções periódicas para EDOs clássicas, agora sob a ótica das EDOs generalizadas, quando então, em vez de funções continuamente diferenciáveis, necessitamos, apenas, que as funções envolvidas na EDO sejam integráveis no sentido de Kurzweil-Henstock. Adicionamos, também, um resultado sobre a existência de soluções periódicas de EDOs generalizadas e aplicamos tal resultado para EDOs. A fim de obtermos os resultados que pretendíamos, utilizamos a teoria do grau coincidente. Finalmente, mencionamos que os resultados inéditos deste trabalho estão contidos em [6]In this work, we study the bifurcation theory for ordinary dierential equations (we write simply ODEs), as well as the existence of a bifurcation point for periodic solutions of these equations. Then we develop the theory of bifurcation for generalized ordinary differential equations (we write generalized ODEs for short). Such theory is new. We obtained an existence result of a bifurcation point for periodic solutions of generalized ODEs. By means of the correspondence of classic ODEs and generalized ODEs, we were able to translate the results to classic ODEs, now in the framework of generalized ODE. This means that instead of the classic hypothesis that the functions involved in the differential equation are continuously differentiable, we only require that they are Kurzweil-Henstock integrable. We also added a result on the existence of a periodic solution of a generalized ODE and we applied such result to classic ODEs. In order to obtain our main results, we employed the coincidence degree theory. Finally, we point out that our results are contained in [6]Biblioteca Digitais de Teses e Dissertações da USPFederson, Márcia Cristina Anderson BrazMacena, Maria Carolina Stefani Mesquita2013-10-24info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://www.teses.usp.br/teses/disponiveis/55/55135/tde-29012014-162300/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesspor2016-07-28T16:11:02Zoai:teses.usp.br:tde-29012014-162300Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212016-07-28T16:11:02Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false
dc.title.none.fl_str_mv Teoria de bifurcação para equações diferenciais ordinárias generalizadas e aplicações às equações diferenciais ordinárias
Bifurcation theory for generalized ordinary differential equations and applications to ordinary differential equations
title Teoria de bifurcação para equações diferenciais ordinárias generalizadas e aplicações às equações diferenciais ordinárias
spellingShingle Teoria de bifurcação para equações diferenciais ordinárias generalizadas e aplicações às equações diferenciais ordinárias
Macena, Maria Carolina Stefani Mesquita
Bifurcação
Bifurcation
Periodic solutions
Soluções periódicas
title_short Teoria de bifurcação para equações diferenciais ordinárias generalizadas e aplicações às equações diferenciais ordinárias
title_full Teoria de bifurcação para equações diferenciais ordinárias generalizadas e aplicações às equações diferenciais ordinárias
title_fullStr Teoria de bifurcação para equações diferenciais ordinárias generalizadas e aplicações às equações diferenciais ordinárias
title_full_unstemmed Teoria de bifurcação para equações diferenciais ordinárias generalizadas e aplicações às equações diferenciais ordinárias
title_sort Teoria de bifurcação para equações diferenciais ordinárias generalizadas e aplicações às equações diferenciais ordinárias
author Macena, Maria Carolina Stefani Mesquita
author_facet Macena, Maria Carolina Stefani Mesquita
author_role author
dc.contributor.none.fl_str_mv Federson, Márcia Cristina Anderson Braz
dc.contributor.author.fl_str_mv Macena, Maria Carolina Stefani Mesquita
dc.subject.por.fl_str_mv Bifurcação
Bifurcation
Periodic solutions
Soluções periódicas
topic Bifurcação
Bifurcation
Periodic solutions
Soluções periódicas
description Neste trabalho, estudamos a teoria de bifurcação para equações diferenciais ordinárias (escrevemos simplesmente EDOs), bem como a existência de ponto de bifurcação para soluções periódicas destas equações. Em seguida, desenvolvemos a teoria, até então inexistente, sobre bifurcação para equações diferenciais ordinárias generalizadas (EDOs generalizadas). Neste desenvolvimento, obtivemos para EDOs generalizadas, um resultado sobre existência de ponto de bifurcação para soluções periódicas. Em seguida, através da correspondência entre EDOs e EDOs generalizadas, obtivemos novos resultados sobre a existência de ponto de bifurcação para soluções periódicas para EDOs clássicas, agora sob a ótica das EDOs generalizadas, quando então, em vez de funções continuamente diferenciáveis, necessitamos, apenas, que as funções envolvidas na EDO sejam integráveis no sentido de Kurzweil-Henstock. Adicionamos, também, um resultado sobre a existência de soluções periódicas de EDOs generalizadas e aplicamos tal resultado para EDOs. A fim de obtermos os resultados que pretendíamos, utilizamos a teoria do grau coincidente. Finalmente, mencionamos que os resultados inéditos deste trabalho estão contidos em [6]
publishDate 2013
dc.date.none.fl_str_mv 2013-10-24
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://www.teses.usp.br/teses/disponiveis/55/55135/tde-29012014-162300/
url http://www.teses.usp.br/teses/disponiveis/55/55135/tde-29012014-162300/
dc.language.iso.fl_str_mv por
language por
dc.relation.none.fl_str_mv
dc.rights.driver.fl_str_mv Liberar o conteúdo para acesso público.
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Liberar o conteúdo para acesso público.
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.coverage.none.fl_str_mv
dc.publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
dc.source.none.fl_str_mv
reponame:Biblioteca Digital de Teses e Dissertações da USP
instname:Universidade de São Paulo (USP)
instacron:USP
instname_str Universidade de São Paulo (USP)
instacron_str USP
institution USP
reponame_str Biblioteca Digital de Teses e Dissertações da USP
collection Biblioteca Digital de Teses e Dissertações da USP
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)
repository.mail.fl_str_mv virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br
_version_ 1809091164885745664