Maleabilidade em redes complexas: efeitos de sucessivas remoções de arestas

Detalhes bibliográficos
Autor(a) principal: Furuta, Roberto Hiroshi Matos
Data de Publicação: 2023
Tipo de documento: Dissertação
Idioma: por
Título da fonte: Biblioteca Digital de Teses e Dissertações da USP
Texto Completo: https://www.teses.usp.br/teses/disponiveis/76/76135/tde-04102023-084922/
Resumo: A disseminação recente de tecnologias de monitoramento e simulação tem levado a um aumento na captação e geração de dados. Para modelar estes sistemas, é comum se utilizar redes complexas por poder incorporar conexões entre os elementos em sua estrutura. Este estudo aborda uma medida recém-introduzida, a maleabilidade de redes complexas, com foco nos modelos Erdös-Rényi, Watts-Strogatz e Barabási-Albert, estimando-a com base no coeficiente de agrupamento. A maleabilidade pode ser interpretada como a quantidade efetiva de estados isomórficos que uma rede pode assumir diante de modificações específicas. No entanto, calculá-la por meio da determinação de isomorfismos é custoso e não fornece um valor intuitivo quando o interesse é quantificar a variabilidade de uma medida particular. Para superar essas limitações, é possível estimá-la considerando-se uma ou mais medidas. Neste estudo, foca-se na maleabilidade estimada em relação ao coeficiente de agrupamento médio, medida selecionada por avaliar o grau de interconexão de um nó com seus vizinhos e boa eficiência computacional. A pesquisa concentra-se na remoção de arestas como uma modificação incremental nas redes, escolhidas com base em três critérios: aleatório, maximização e minimização da maleabilidade estimada. Nos experimentos, foi observado que, nas redes do tipo Watts-Strogatz, a maleabilidade mostra um aumento acentuado até atingir um pico, seguido por um declínio suave. O mesmo padrão é observado na curva de maximização da mesma, porém otimizado. Em contraste, a curva de minimização da maleabilidade apresenta um decrescimento suave e uniforme. Também nota-se que, em todos os modelos, as remoções que minimizam a maleabilidade resultaram no maior valor médio do coeficiente de agrupamento observado. Para investigar o impacto das remoções de arestas nas redes em simulações de dinâmicas, realizamos caminhadas aleatórias em cada uma das redes mencionadas. A ativação de nós em cada caminhada e a correlação entre essa ativação e os graus de entrada e saída ao longo das remoções foram determinadas. Essa correlação, denominada steering coefficient, foi comparada entre os três critérios de remoção de arestas mencionados anteriormente. Observa-se que a remoção aleatória de arestas tende a diminuir o steering coefficient, enquanto as remoções que minimizam a maleabilidade preservam essa correlação. As remoções que maximizam a maleabilidade mostram um perfil intermediário. Um achado notável é a alta robustez do steering coefficient em relação às remoções que minimizam a maleabilidade nas redes do tipo Watts-Strogatz. Acreditamos que, embora focado em uma combinação específica de modelos e critérios, este trabalho apresenta um avanço na compreensão das redes analisadas por meio dessa nova medida.
id USP_5ac4fbf0fff1e0822275d7d5349ac16b
oai_identifier_str oai:teses.usp.br:tde-04102023-084922
network_acronym_str USP
network_name_str Biblioteca Digital de Teses e Dissertações da USP
repository_id_str 2721
spelling Maleabilidade em redes complexas: efeitos de sucessivas remoções de arestasMalleability in complex networks: effects of successive removals of edgesCiência das redesComplex networksGrafosGraphsMaleabilidadeMalleabilityNetwork scienceRedes complexasA disseminação recente de tecnologias de monitoramento e simulação tem levado a um aumento na captação e geração de dados. Para modelar estes sistemas, é comum se utilizar redes complexas por poder incorporar conexões entre os elementos em sua estrutura. Este estudo aborda uma medida recém-introduzida, a maleabilidade de redes complexas, com foco nos modelos Erdös-Rényi, Watts-Strogatz e Barabási-Albert, estimando-a com base no coeficiente de agrupamento. A maleabilidade pode ser interpretada como a quantidade efetiva de estados isomórficos que uma rede pode assumir diante de modificações específicas. No entanto, calculá-la por meio da determinação de isomorfismos é custoso e não fornece um valor intuitivo quando o interesse é quantificar a variabilidade de uma medida particular. Para superar essas limitações, é possível estimá-la considerando-se uma ou mais medidas. Neste estudo, foca-se na maleabilidade estimada em relação ao coeficiente de agrupamento médio, medida selecionada por avaliar o grau de interconexão de um nó com seus vizinhos e boa eficiência computacional. A pesquisa concentra-se na remoção de arestas como uma modificação incremental nas redes, escolhidas com base em três critérios: aleatório, maximização e minimização da maleabilidade estimada. Nos experimentos, foi observado que, nas redes do tipo Watts-Strogatz, a maleabilidade mostra um aumento acentuado até atingir um pico, seguido por um declínio suave. O mesmo padrão é observado na curva de maximização da mesma, porém otimizado. Em contraste, a curva de minimização da maleabilidade apresenta um decrescimento suave e uniforme. Também nota-se que, em todos os modelos, as remoções que minimizam a maleabilidade resultaram no maior valor médio do coeficiente de agrupamento observado. Para investigar o impacto das remoções de arestas nas redes em simulações de dinâmicas, realizamos caminhadas aleatórias em cada uma das redes mencionadas. A ativação de nós em cada caminhada e a correlação entre essa ativação e os graus de entrada e saída ao longo das remoções foram determinadas. Essa correlação, denominada steering coefficient, foi comparada entre os três critérios de remoção de arestas mencionados anteriormente. Observa-se que a remoção aleatória de arestas tende a diminuir o steering coefficient, enquanto as remoções que minimizam a maleabilidade preservam essa correlação. As remoções que maximizam a maleabilidade mostram um perfil intermediário. Um achado notável é a alta robustez do steering coefficient em relação às remoções que minimizam a maleabilidade nas redes do tipo Watts-Strogatz. Acreditamos que, embora focado em uma combinação específica de modelos e critérios, este trabalho apresenta um avanço na compreensão das redes analisadas por meio dessa nova medida.The recent dissemination of surveillance and simulation technologies has led to an increase in data acquisition and generation. To model these systems, it is common to use complex networks as they can incorporate connections between elements into their structure. This study addresses a recently introduced measurement, the malleability of complex networks, focusing on the Erdös-Rényi, Watts-Strogatz, and Barabási-Albert models, estimating it based on the clustering coefficient. Malleability can be interpreted as the effective quantity of isomorphic states a network can unfold to under specific modifications. However, calculating the malleability by isomorphic state determination is costly and it does not provide an intuitive value when the interest is in quantifying the variability of a particular measurement. To overcome these limitations, it is possible to estimate it by calculating it with respect to one or more measurements. In this study, the focus is on the malleability estimated in respect to the average clustering coefficient, a measure chosen to assess the degree of interconnection of a node with its neighbors and for offering good computational efficiency. This research focuses on edge removal as an incremental modification in the networks, chosen based on three criteria: random, maximization, and minimization of estimated Malleability. In the experiments, it was observed that in Watts-Strogatz networks, malleability shows a sharp increase until reaching a peak, followed by a gentle decline. The same pattern was observed in the maximization curve of Malleability, though optimized. In contrast, the minimization curve of malleability presents a smooth and uniform decrease. It is also noticeable that, in all models, the removals that minimize malleability resulted in the highest average clustering coefficient observed. To investigate the impact of edge removals on networks in dynamic simulations, random walks were performed on each of the mentioned networks. The activation of nodes in each walk and the correlation between its activation and the in-degree and out-degree along the removals were determined. This correlation, referred to as the \"steering coefficient,\" was compared among the three aforementioned edge removal criteria. It is observed that random edge removal tends to decrease the steering coefficient, while removals that minimize malleability preserve this correlation. Removals that maximize malleability show an intermediate profile. A notable finding is the high robustness of the steering coefficient regarding removals that minimize Malleability in Watts-Strogatz-type networks. We believe that, although focused on a specific combination of models and criteria, this work represents an advancement in understanding the analyzed networks through this new measure.Biblioteca Digitais de Teses e Dissertações da USPCosta, Luciano da FontouraFuruta, Roberto Hiroshi Matos2023-09-12info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttps://www.teses.usp.br/teses/disponiveis/76/76135/tde-04102023-084922/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesspor2024-08-22T21:14:03Zoai:teses.usp.br:tde-04102023-084922Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212024-08-22T21:14:03Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false
dc.title.none.fl_str_mv Maleabilidade em redes complexas: efeitos de sucessivas remoções de arestas
Malleability in complex networks: effects of successive removals of edges
title Maleabilidade em redes complexas: efeitos de sucessivas remoções de arestas
spellingShingle Maleabilidade em redes complexas: efeitos de sucessivas remoções de arestas
Furuta, Roberto Hiroshi Matos
Ciência das redes
Complex networks
Grafos
Graphs
Maleabilidade
Malleability
Network science
Redes complexas
title_short Maleabilidade em redes complexas: efeitos de sucessivas remoções de arestas
title_full Maleabilidade em redes complexas: efeitos de sucessivas remoções de arestas
title_fullStr Maleabilidade em redes complexas: efeitos de sucessivas remoções de arestas
title_full_unstemmed Maleabilidade em redes complexas: efeitos de sucessivas remoções de arestas
title_sort Maleabilidade em redes complexas: efeitos de sucessivas remoções de arestas
author Furuta, Roberto Hiroshi Matos
author_facet Furuta, Roberto Hiroshi Matos
author_role author
dc.contributor.none.fl_str_mv Costa, Luciano da Fontoura
dc.contributor.author.fl_str_mv Furuta, Roberto Hiroshi Matos
dc.subject.por.fl_str_mv Ciência das redes
Complex networks
Grafos
Graphs
Maleabilidade
Malleability
Network science
Redes complexas
topic Ciência das redes
Complex networks
Grafos
Graphs
Maleabilidade
Malleability
Network science
Redes complexas
description A disseminação recente de tecnologias de monitoramento e simulação tem levado a um aumento na captação e geração de dados. Para modelar estes sistemas, é comum se utilizar redes complexas por poder incorporar conexões entre os elementos em sua estrutura. Este estudo aborda uma medida recém-introduzida, a maleabilidade de redes complexas, com foco nos modelos Erdös-Rényi, Watts-Strogatz e Barabási-Albert, estimando-a com base no coeficiente de agrupamento. A maleabilidade pode ser interpretada como a quantidade efetiva de estados isomórficos que uma rede pode assumir diante de modificações específicas. No entanto, calculá-la por meio da determinação de isomorfismos é custoso e não fornece um valor intuitivo quando o interesse é quantificar a variabilidade de uma medida particular. Para superar essas limitações, é possível estimá-la considerando-se uma ou mais medidas. Neste estudo, foca-se na maleabilidade estimada em relação ao coeficiente de agrupamento médio, medida selecionada por avaliar o grau de interconexão de um nó com seus vizinhos e boa eficiência computacional. A pesquisa concentra-se na remoção de arestas como uma modificação incremental nas redes, escolhidas com base em três critérios: aleatório, maximização e minimização da maleabilidade estimada. Nos experimentos, foi observado que, nas redes do tipo Watts-Strogatz, a maleabilidade mostra um aumento acentuado até atingir um pico, seguido por um declínio suave. O mesmo padrão é observado na curva de maximização da mesma, porém otimizado. Em contraste, a curva de minimização da maleabilidade apresenta um decrescimento suave e uniforme. Também nota-se que, em todos os modelos, as remoções que minimizam a maleabilidade resultaram no maior valor médio do coeficiente de agrupamento observado. Para investigar o impacto das remoções de arestas nas redes em simulações de dinâmicas, realizamos caminhadas aleatórias em cada uma das redes mencionadas. A ativação de nós em cada caminhada e a correlação entre essa ativação e os graus de entrada e saída ao longo das remoções foram determinadas. Essa correlação, denominada steering coefficient, foi comparada entre os três critérios de remoção de arestas mencionados anteriormente. Observa-se que a remoção aleatória de arestas tende a diminuir o steering coefficient, enquanto as remoções que minimizam a maleabilidade preservam essa correlação. As remoções que maximizam a maleabilidade mostram um perfil intermediário. Um achado notável é a alta robustez do steering coefficient em relação às remoções que minimizam a maleabilidade nas redes do tipo Watts-Strogatz. Acreditamos que, embora focado em uma combinação específica de modelos e critérios, este trabalho apresenta um avanço na compreensão das redes analisadas por meio dessa nova medida.
publishDate 2023
dc.date.none.fl_str_mv 2023-09-12
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://www.teses.usp.br/teses/disponiveis/76/76135/tde-04102023-084922/
url https://www.teses.usp.br/teses/disponiveis/76/76135/tde-04102023-084922/
dc.language.iso.fl_str_mv por
language por
dc.relation.none.fl_str_mv
dc.rights.driver.fl_str_mv Liberar o conteúdo para acesso público.
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Liberar o conteúdo para acesso público.
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.coverage.none.fl_str_mv
dc.publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
dc.source.none.fl_str_mv
reponame:Biblioteca Digital de Teses e Dissertações da USP
instname:Universidade de São Paulo (USP)
instacron:USP
instname_str Universidade de São Paulo (USP)
instacron_str USP
institution USP
reponame_str Biblioteca Digital de Teses e Dissertações da USP
collection Biblioteca Digital de Teses e Dissertações da USP
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)
repository.mail.fl_str_mv virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br
_version_ 1815256674567454720