Combinação de visão monocular e sonares esparsos para a localização de robôs móveis.

Detalhes bibliográficos
Autor(a) principal: Barra, Roberto José Giordano
Data de Publicação: 2007
Tipo de documento: Dissertação
Idioma: por
Título da fonte: Biblioteca Digital de Teses e Dissertações da USP
Texto Completo: http://www.teses.usp.br/teses/disponiveis/3/3141/tde-13072007-164026/
Resumo: Um componente fundamental no sistema de um robô móvel consiste na habilidade de localizar-se acuradamente, o que envolve estimar sua postura em relação a uma representação global do espaço. A especificação geral de uma abordagem de localização baseada em dados sensoriais possui uma estimativa inicial da postura do robô e usa os dados coletados pelos sensores, em conjunto com um mapa do ambiente, para produzir uma estimativa mais precisa da postura, que oferece um valor de maior confiança em relação à postura real do robô. Uma dificuldade é que os dados sensoriais são corrompidos por erros de medidas derivados de diversas fontes, como ruídos, quantização, dispositivos de digitalização, deslizamentos do robô, entre outras. Sensores distintos medem diferentes propriedades físicas, corrompidas por diversos erros de medida. O uso de dados oriundos de vários sensores fornece informação redundante e complementar, que pode ser processada para derivar uma estimativa combinada com o objetivo de aumentar a confiança na estimativa final da postura. Nesta dissertação é proposto ELViS, um sistema que estima a localização de um robô móvel equipado com odômetros, uma câmera de vídeo e um semi-anel frontal de 8 sonares, o qual opera, com sucesso, em um ambiente interno, estruturado e estático. Assume-se que o robô navega sobre uma superfície plana e que diversos segmentos de retas possam ser identificados nas imagens do ambiente. Para aumentar a seletividade dos marcos visuais e diminuir a complexidade computacional no processamento e correspondência dos dados com os modelos, elementos do ambiente são representados por modelos minimalistas, possibilitando o uso do ELViS em um grande número de aplicações onde o custo ou tempo de execução sejam fatores limitantes. ELViS foi implementado e testado utilizando dois estimadores baseados em Filtro de Kalman. Os resultados, obtidos com robôs reais e em simulações, indicam direções bastante promissoras.
id USP_5b03830f21f275d0980a703f2cfe04b4
oai_identifier_str oai:teses.usp.br:tde-13072007-164026
network_acronym_str USP
network_name_str Biblioteca Digital de Teses e Dissertações da USP
repository_id_str 2721
spelling Combinação de visão monocular e sonares esparsos para a localização de robôs móveis.Combination of monocular vision and sparse sonares for mobile robots localization.Computational visionFiltros de KalmanKalman filterRobóticaRoboticsVisão computacionalUm componente fundamental no sistema de um robô móvel consiste na habilidade de localizar-se acuradamente, o que envolve estimar sua postura em relação a uma representação global do espaço. A especificação geral de uma abordagem de localização baseada em dados sensoriais possui uma estimativa inicial da postura do robô e usa os dados coletados pelos sensores, em conjunto com um mapa do ambiente, para produzir uma estimativa mais precisa da postura, que oferece um valor de maior confiança em relação à postura real do robô. Uma dificuldade é que os dados sensoriais são corrompidos por erros de medidas derivados de diversas fontes, como ruídos, quantização, dispositivos de digitalização, deslizamentos do robô, entre outras. Sensores distintos medem diferentes propriedades físicas, corrompidas por diversos erros de medida. O uso de dados oriundos de vários sensores fornece informação redundante e complementar, que pode ser processada para derivar uma estimativa combinada com o objetivo de aumentar a confiança na estimativa final da postura. Nesta dissertação é proposto ELViS, um sistema que estima a localização de um robô móvel equipado com odômetros, uma câmera de vídeo e um semi-anel frontal de 8 sonares, o qual opera, com sucesso, em um ambiente interno, estruturado e estático. Assume-se que o robô navega sobre uma superfície plana e que diversos segmentos de retas possam ser identificados nas imagens do ambiente. Para aumentar a seletividade dos marcos visuais e diminuir a complexidade computacional no processamento e correspondência dos dados com os modelos, elementos do ambiente são representados por modelos minimalistas, possibilitando o uso do ELViS em um grande número de aplicações onde o custo ou tempo de execução sejam fatores limitantes. ELViS foi implementado e testado utilizando dois estimadores baseados em Filtro de Kalman. Os resultados, obtidos com robôs reais e em simulações, indicam direções bastante promissoras.A key component of a mobile robot system is the ability to localize itself accurately, which involves estimating its pose with respect to some global representation of space. The general specification of a sensor-based localization approach starts with an initial estimate of the robot\'s pose and uses sensor data in conjunction with a map to produce a refined pose estimate that has an increased confidence about the true pose of the robot. One of the main difficulties is that sensor data is corrupted by measurement errors. These errors can arise from noise, quantization, digitalization artifacts, wheel slippage, and other such sources. Different sensors measure different physical properties, which are corrupted by different sources of measurement errors. The use of data from multiple sensors provides redundant and complementary information that can be processed to obtain a combined estimate aiming at an increase in the confidence of the final pose estimate. In this work we propose ELViS, a system that estimates the localization of a mobile robot equipped with odometers, a video camera and a frontal semi-ring of 8 sonar sensors, and that operates successfully in stationary and structured indoor environments. It is assumed that the robot navigates on flat surfaces and that straight lines can be identified in the environment image acquired by the camera. To increase selectivity of the landmarks and reduce computational complexity in data processing and matching to the map, environment features are represented using minimalist models in the map. This allows the use of ELViS in a large number of applications where tight budget or execution time constraints exist. ELViS has been implemented and tested using two estimators based on the Kalman Filter. The results, obtained with the real robots and in series of simulation runs, indicate promising directions.Biblioteca Digitais de Teses e Dissertações da USPReali Costa, Anna HelenaBarra, Roberto José Giordano2007-03-16info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://www.teses.usp.br/teses/disponiveis/3/3141/tde-13072007-164026/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesspor2016-07-28T16:09:51Zoai:teses.usp.br:tde-13072007-164026Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212016-07-28T16:09:51Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false
dc.title.none.fl_str_mv Combinação de visão monocular e sonares esparsos para a localização de robôs móveis.
Combination of monocular vision and sparse sonares for mobile robots localization.
title Combinação de visão monocular e sonares esparsos para a localização de robôs móveis.
spellingShingle Combinação de visão monocular e sonares esparsos para a localização de robôs móveis.
Barra, Roberto José Giordano
Computational vision
Filtros de Kalman
Kalman filter
Robótica
Robotics
Visão computacional
title_short Combinação de visão monocular e sonares esparsos para a localização de robôs móveis.
title_full Combinação de visão monocular e sonares esparsos para a localização de robôs móveis.
title_fullStr Combinação de visão monocular e sonares esparsos para a localização de robôs móveis.
title_full_unstemmed Combinação de visão monocular e sonares esparsos para a localização de robôs móveis.
title_sort Combinação de visão monocular e sonares esparsos para a localização de robôs móveis.
author Barra, Roberto José Giordano
author_facet Barra, Roberto José Giordano
author_role author
dc.contributor.none.fl_str_mv Reali Costa, Anna Helena
dc.contributor.author.fl_str_mv Barra, Roberto José Giordano
dc.subject.por.fl_str_mv Computational vision
Filtros de Kalman
Kalman filter
Robótica
Robotics
Visão computacional
topic Computational vision
Filtros de Kalman
Kalman filter
Robótica
Robotics
Visão computacional
description Um componente fundamental no sistema de um robô móvel consiste na habilidade de localizar-se acuradamente, o que envolve estimar sua postura em relação a uma representação global do espaço. A especificação geral de uma abordagem de localização baseada em dados sensoriais possui uma estimativa inicial da postura do robô e usa os dados coletados pelos sensores, em conjunto com um mapa do ambiente, para produzir uma estimativa mais precisa da postura, que oferece um valor de maior confiança em relação à postura real do robô. Uma dificuldade é que os dados sensoriais são corrompidos por erros de medidas derivados de diversas fontes, como ruídos, quantização, dispositivos de digitalização, deslizamentos do robô, entre outras. Sensores distintos medem diferentes propriedades físicas, corrompidas por diversos erros de medida. O uso de dados oriundos de vários sensores fornece informação redundante e complementar, que pode ser processada para derivar uma estimativa combinada com o objetivo de aumentar a confiança na estimativa final da postura. Nesta dissertação é proposto ELViS, um sistema que estima a localização de um robô móvel equipado com odômetros, uma câmera de vídeo e um semi-anel frontal de 8 sonares, o qual opera, com sucesso, em um ambiente interno, estruturado e estático. Assume-se que o robô navega sobre uma superfície plana e que diversos segmentos de retas possam ser identificados nas imagens do ambiente. Para aumentar a seletividade dos marcos visuais e diminuir a complexidade computacional no processamento e correspondência dos dados com os modelos, elementos do ambiente são representados por modelos minimalistas, possibilitando o uso do ELViS em um grande número de aplicações onde o custo ou tempo de execução sejam fatores limitantes. ELViS foi implementado e testado utilizando dois estimadores baseados em Filtro de Kalman. Os resultados, obtidos com robôs reais e em simulações, indicam direções bastante promissoras.
publishDate 2007
dc.date.none.fl_str_mv 2007-03-16
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://www.teses.usp.br/teses/disponiveis/3/3141/tde-13072007-164026/
url http://www.teses.usp.br/teses/disponiveis/3/3141/tde-13072007-164026/
dc.language.iso.fl_str_mv por
language por
dc.relation.none.fl_str_mv
dc.rights.driver.fl_str_mv Liberar o conteúdo para acesso público.
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Liberar o conteúdo para acesso público.
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.coverage.none.fl_str_mv
dc.publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
dc.source.none.fl_str_mv
reponame:Biblioteca Digital de Teses e Dissertações da USP
instname:Universidade de São Paulo (USP)
instacron:USP
instname_str Universidade de São Paulo (USP)
instacron_str USP
institution USP
reponame_str Biblioteca Digital de Teses e Dissertações da USP
collection Biblioteca Digital de Teses e Dissertações da USP
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)
repository.mail.fl_str_mv virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br
_version_ 1815256938316824576