Bayesian network quantization method and structural learning

Detalhes bibliográficos
Autor(a) principal: Ribeiro, Rafael Rodrigues Mendes
Data de Publicação: 2024
Tipo de documento: Tese
Idioma: eng
Título da fonte: Biblioteca Digital de Teses e Dissertações da USP
Texto Completo: https://www.teses.usp.br/teses/disponiveis/18/18153/tde-08032024-101119/
Resumo: Bayesian Networks (BNs) are versatile models for capturing complex relationships, widely applied in diverse fields. This study focuses on discrete variable BNs. Modeling quality depends on adequate data volume, especially for constructing conditional probability tables (CPTs). The quantity of required data varies with the chosen BN Directed Acyclic Graph (DAG). Structural learning of the BN involves an NP-hard problem with a super-exponential DAG search space. This thesis proposes investigating multi-objective optimization in BN structural learning (BNSL) to balance conflicting criteria. The approach utilizes Pareto sets and multi-objective Genetic Algorithms (GAs). To perform BNSL, a parallel GA with automatic parameter adjustment is developed, called Adaptive Genetic Algorithm with Varying Population Size (AGAVaPS). This proposed algorithm is thoroughly tested on different applications and BNSL. AGAVaPS is found to be a good algorithm to be used in BNSL, performing better than HillClimbing and Tabu Search for some of the metrics measured. The study also explores the impact of data quantization on the BNSL search space. It also introduces a quantization method called CPT Limit-Based Quantization (CLBQ) that balances model quality, data fidelity, and structure score. The effectiveness of this method is tested and its capability of being used in search and score BNSL is investigated. CLBQ is found to be a good quantization algorithm, choosing quantization that has a good mean squared error and modeling well the variables\' distributions. Also, CLBQ is suitable to be used on BNSL.
id USP_5bd0c3804f8ba9fa93beaf890d71890a
oai_identifier_str oai:teses.usp.br:tde-08032024-101119
network_acronym_str USP
network_name_str Biblioteca Digital de Teses e Dissertações da USP
repository_id_str 2721
spelling Bayesian network quantization method and structural learningMétodo de quantização para Redes Bayesianas e aprendizagem estrutural de Redes Bayesianasalgoritmos evolutivosaprendizagem estruturalbayesian networkevolutionary algorithmquantizaçãoquantizationRedes Bayesianasstructural learningBayesian Networks (BNs) are versatile models for capturing complex relationships, widely applied in diverse fields. This study focuses on discrete variable BNs. Modeling quality depends on adequate data volume, especially for constructing conditional probability tables (CPTs). The quantity of required data varies with the chosen BN Directed Acyclic Graph (DAG). Structural learning of the BN involves an NP-hard problem with a super-exponential DAG search space. This thesis proposes investigating multi-objective optimization in BN structural learning (BNSL) to balance conflicting criteria. The approach utilizes Pareto sets and multi-objective Genetic Algorithms (GAs). To perform BNSL, a parallel GA with automatic parameter adjustment is developed, called Adaptive Genetic Algorithm with Varying Population Size (AGAVaPS). This proposed algorithm is thoroughly tested on different applications and BNSL. AGAVaPS is found to be a good algorithm to be used in BNSL, performing better than HillClimbing and Tabu Search for some of the metrics measured. The study also explores the impact of data quantization on the BNSL search space. It also introduces a quantization method called CPT Limit-Based Quantization (CLBQ) that balances model quality, data fidelity, and structure score. The effectiveness of this method is tested and its capability of being used in search and score BNSL is investigated. CLBQ is found to be a good quantization algorithm, choosing quantization that has a good mean squared error and modeling well the variables\' distributions. Also, CLBQ is suitable to be used on BNSL.Redes Bayesianas (BNs) são modelos versáteis para capturar relações complexas e são amplamente aplicados em diversos campos. Este estudo concentra-se em BNs com variáveis discretas. A qualidade do modelamento depende do volume adequado de dados, especialmente para construir tabelas de probabilidade condicional (CPTs). A quantidade de dados necessários varia com o Grafo Direcionado Acíclico (DAG) escolhido para a BN. A aprendizagem estrutural da BN envolve um problema NP-difícil com um espaço de busca DAG superexponencial. Esta tese propõe investigar a otimização multiobjetivo na aprendizagem estrutural de BN (BNSL) para equilibrar critérios conflitantes. A abordagem utiliza conjuntos de Pareto e Algoritmos Genéticos (GAs) multiobjetivo. Para realizar a BNSL, desenvolveu-se um GA multiobjetivo adaptativo paralelo com ajuste automático de parâmetros, denominado Algoritmo Genético Adaptativo com Tamanho de População Variável (AGAVaPS). Esse algoritmo proposto é extensivamente testado em diversas aplicações e em BNSL, mostrando-se superior a HillClimbing e Tabu Search em algumas métricas utilizadas. O estudo também explora o impacto da quantização de dados no espaço de busca de BNSL. Introduz ainda um método de quantização chamado Quantização Baseada em Limite de CPT (CLBQ) que equilibra qualidade do modelo, fidelidade aos dados e pontuação da estrutura. A eficácia desse método é testada, demonstrando sua capacidade de ser usado na BNSL baseada em busca e pontuação. CLBQ obtém bons resultados, escolhendo quantizações com um bom erro médio quadrático e modelando bem as distribuições das variáveis. Além disso, CLBQ é adequado para uso em BNSL.Biblioteca Digitais de Teses e Dissertações da USPMaciel, Carlos DiasRibeiro, Rafael Rodrigues Mendes2024-02-05info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfhttps://www.teses.usp.br/teses/disponiveis/18/18153/tde-08032024-101119/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesseng2024-03-11T15:43:03Zoai:teses.usp.br:tde-08032024-101119Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212024-03-11T15:43:03Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false
dc.title.none.fl_str_mv Bayesian network quantization method and structural learning
Método de quantização para Redes Bayesianas e aprendizagem estrutural de Redes Bayesianas
title Bayesian network quantization method and structural learning
spellingShingle Bayesian network quantization method and structural learning
Ribeiro, Rafael Rodrigues Mendes
algoritmos evolutivos
aprendizagem estrutural
bayesian network
evolutionary algorithm
quantização
quantization
Redes Bayesianas
structural learning
title_short Bayesian network quantization method and structural learning
title_full Bayesian network quantization method and structural learning
title_fullStr Bayesian network quantization method and structural learning
title_full_unstemmed Bayesian network quantization method and structural learning
title_sort Bayesian network quantization method and structural learning
author Ribeiro, Rafael Rodrigues Mendes
author_facet Ribeiro, Rafael Rodrigues Mendes
author_role author
dc.contributor.none.fl_str_mv Maciel, Carlos Dias
dc.contributor.author.fl_str_mv Ribeiro, Rafael Rodrigues Mendes
dc.subject.por.fl_str_mv algoritmos evolutivos
aprendizagem estrutural
bayesian network
evolutionary algorithm
quantização
quantization
Redes Bayesianas
structural learning
topic algoritmos evolutivos
aprendizagem estrutural
bayesian network
evolutionary algorithm
quantização
quantization
Redes Bayesianas
structural learning
description Bayesian Networks (BNs) are versatile models for capturing complex relationships, widely applied in diverse fields. This study focuses on discrete variable BNs. Modeling quality depends on adequate data volume, especially for constructing conditional probability tables (CPTs). The quantity of required data varies with the chosen BN Directed Acyclic Graph (DAG). Structural learning of the BN involves an NP-hard problem with a super-exponential DAG search space. This thesis proposes investigating multi-objective optimization in BN structural learning (BNSL) to balance conflicting criteria. The approach utilizes Pareto sets and multi-objective Genetic Algorithms (GAs). To perform BNSL, a parallel GA with automatic parameter adjustment is developed, called Adaptive Genetic Algorithm with Varying Population Size (AGAVaPS). This proposed algorithm is thoroughly tested on different applications and BNSL. AGAVaPS is found to be a good algorithm to be used in BNSL, performing better than HillClimbing and Tabu Search for some of the metrics measured. The study also explores the impact of data quantization on the BNSL search space. It also introduces a quantization method called CPT Limit-Based Quantization (CLBQ) that balances model quality, data fidelity, and structure score. The effectiveness of this method is tested and its capability of being used in search and score BNSL is investigated. CLBQ is found to be a good quantization algorithm, choosing quantization that has a good mean squared error and modeling well the variables\' distributions. Also, CLBQ is suitable to be used on BNSL.
publishDate 2024
dc.date.none.fl_str_mv 2024-02-05
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://www.teses.usp.br/teses/disponiveis/18/18153/tde-08032024-101119/
url https://www.teses.usp.br/teses/disponiveis/18/18153/tde-08032024-101119/
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv
dc.rights.driver.fl_str_mv Liberar o conteúdo para acesso público.
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Liberar o conteúdo para acesso público.
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.coverage.none.fl_str_mv
dc.publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
dc.source.none.fl_str_mv
reponame:Biblioteca Digital de Teses e Dissertações da USP
instname:Universidade de São Paulo (USP)
instacron:USP
instname_str Universidade de São Paulo (USP)
instacron_str USP
institution USP
reponame_str Biblioteca Digital de Teses e Dissertações da USP
collection Biblioteca Digital de Teses e Dissertações da USP
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)
repository.mail.fl_str_mv virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br
_version_ 1815256796825124864