Bayesian network quantization method and structural learning
Autor(a) principal: | |
---|---|
Data de Publicação: | 2024 |
Tipo de documento: | Tese |
Idioma: | eng |
Título da fonte: | Biblioteca Digital de Teses e Dissertações da USP |
Texto Completo: | https://www.teses.usp.br/teses/disponiveis/18/18153/tde-08032024-101119/ |
Resumo: | Bayesian Networks (BNs) are versatile models for capturing complex relationships, widely applied in diverse fields. This study focuses on discrete variable BNs. Modeling quality depends on adequate data volume, especially for constructing conditional probability tables (CPTs). The quantity of required data varies with the chosen BN Directed Acyclic Graph (DAG). Structural learning of the BN involves an NP-hard problem with a super-exponential DAG search space. This thesis proposes investigating multi-objective optimization in BN structural learning (BNSL) to balance conflicting criteria. The approach utilizes Pareto sets and multi-objective Genetic Algorithms (GAs). To perform BNSL, a parallel GA with automatic parameter adjustment is developed, called Adaptive Genetic Algorithm with Varying Population Size (AGAVaPS). This proposed algorithm is thoroughly tested on different applications and BNSL. AGAVaPS is found to be a good algorithm to be used in BNSL, performing better than HillClimbing and Tabu Search for some of the metrics measured. The study also explores the impact of data quantization on the BNSL search space. It also introduces a quantization method called CPT Limit-Based Quantization (CLBQ) that balances model quality, data fidelity, and structure score. The effectiveness of this method is tested and its capability of being used in search and score BNSL is investigated. CLBQ is found to be a good quantization algorithm, choosing quantization that has a good mean squared error and modeling well the variables\' distributions. Also, CLBQ is suitable to be used on BNSL. |
id |
USP_5bd0c3804f8ba9fa93beaf890d71890a |
---|---|
oai_identifier_str |
oai:teses.usp.br:tde-08032024-101119 |
network_acronym_str |
USP |
network_name_str |
Biblioteca Digital de Teses e Dissertações da USP |
repository_id_str |
2721 |
spelling |
Bayesian network quantization method and structural learningMétodo de quantização para Redes Bayesianas e aprendizagem estrutural de Redes Bayesianasalgoritmos evolutivosaprendizagem estruturalbayesian networkevolutionary algorithmquantizaçãoquantizationRedes Bayesianasstructural learningBayesian Networks (BNs) are versatile models for capturing complex relationships, widely applied in diverse fields. This study focuses on discrete variable BNs. Modeling quality depends on adequate data volume, especially for constructing conditional probability tables (CPTs). The quantity of required data varies with the chosen BN Directed Acyclic Graph (DAG). Structural learning of the BN involves an NP-hard problem with a super-exponential DAG search space. This thesis proposes investigating multi-objective optimization in BN structural learning (BNSL) to balance conflicting criteria. The approach utilizes Pareto sets and multi-objective Genetic Algorithms (GAs). To perform BNSL, a parallel GA with automatic parameter adjustment is developed, called Adaptive Genetic Algorithm with Varying Population Size (AGAVaPS). This proposed algorithm is thoroughly tested on different applications and BNSL. AGAVaPS is found to be a good algorithm to be used in BNSL, performing better than HillClimbing and Tabu Search for some of the metrics measured. The study also explores the impact of data quantization on the BNSL search space. It also introduces a quantization method called CPT Limit-Based Quantization (CLBQ) that balances model quality, data fidelity, and structure score. The effectiveness of this method is tested and its capability of being used in search and score BNSL is investigated. CLBQ is found to be a good quantization algorithm, choosing quantization that has a good mean squared error and modeling well the variables\' distributions. Also, CLBQ is suitable to be used on BNSL.Redes Bayesianas (BNs) são modelos versáteis para capturar relações complexas e são amplamente aplicados em diversos campos. Este estudo concentra-se em BNs com variáveis discretas. A qualidade do modelamento depende do volume adequado de dados, especialmente para construir tabelas de probabilidade condicional (CPTs). A quantidade de dados necessários varia com o Grafo Direcionado Acíclico (DAG) escolhido para a BN. A aprendizagem estrutural da BN envolve um problema NP-difícil com um espaço de busca DAG superexponencial. Esta tese propõe investigar a otimização multiobjetivo na aprendizagem estrutural de BN (BNSL) para equilibrar critérios conflitantes. A abordagem utiliza conjuntos de Pareto e Algoritmos Genéticos (GAs) multiobjetivo. Para realizar a BNSL, desenvolveu-se um GA multiobjetivo adaptativo paralelo com ajuste automático de parâmetros, denominado Algoritmo Genético Adaptativo com Tamanho de População Variável (AGAVaPS). Esse algoritmo proposto é extensivamente testado em diversas aplicações e em BNSL, mostrando-se superior a HillClimbing e Tabu Search em algumas métricas utilizadas. O estudo também explora o impacto da quantização de dados no espaço de busca de BNSL. Introduz ainda um método de quantização chamado Quantização Baseada em Limite de CPT (CLBQ) que equilibra qualidade do modelo, fidelidade aos dados e pontuação da estrutura. A eficácia desse método é testada, demonstrando sua capacidade de ser usado na BNSL baseada em busca e pontuação. CLBQ obtém bons resultados, escolhendo quantizações com um bom erro médio quadrático e modelando bem as distribuições das variáveis. Além disso, CLBQ é adequado para uso em BNSL.Biblioteca Digitais de Teses e Dissertações da USPMaciel, Carlos DiasRibeiro, Rafael Rodrigues Mendes2024-02-05info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfhttps://www.teses.usp.br/teses/disponiveis/18/18153/tde-08032024-101119/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesseng2024-03-11T15:43:03Zoai:teses.usp.br:tde-08032024-101119Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212024-03-11T15:43:03Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false |
dc.title.none.fl_str_mv |
Bayesian network quantization method and structural learning Método de quantização para Redes Bayesianas e aprendizagem estrutural de Redes Bayesianas |
title |
Bayesian network quantization method and structural learning |
spellingShingle |
Bayesian network quantization method and structural learning Ribeiro, Rafael Rodrigues Mendes algoritmos evolutivos aprendizagem estrutural bayesian network evolutionary algorithm quantização quantization Redes Bayesianas structural learning |
title_short |
Bayesian network quantization method and structural learning |
title_full |
Bayesian network quantization method and structural learning |
title_fullStr |
Bayesian network quantization method and structural learning |
title_full_unstemmed |
Bayesian network quantization method and structural learning |
title_sort |
Bayesian network quantization method and structural learning |
author |
Ribeiro, Rafael Rodrigues Mendes |
author_facet |
Ribeiro, Rafael Rodrigues Mendes |
author_role |
author |
dc.contributor.none.fl_str_mv |
Maciel, Carlos Dias |
dc.contributor.author.fl_str_mv |
Ribeiro, Rafael Rodrigues Mendes |
dc.subject.por.fl_str_mv |
algoritmos evolutivos aprendizagem estrutural bayesian network evolutionary algorithm quantização quantization Redes Bayesianas structural learning |
topic |
algoritmos evolutivos aprendizagem estrutural bayesian network evolutionary algorithm quantização quantization Redes Bayesianas structural learning |
description |
Bayesian Networks (BNs) are versatile models for capturing complex relationships, widely applied in diverse fields. This study focuses on discrete variable BNs. Modeling quality depends on adequate data volume, especially for constructing conditional probability tables (CPTs). The quantity of required data varies with the chosen BN Directed Acyclic Graph (DAG). Structural learning of the BN involves an NP-hard problem with a super-exponential DAG search space. This thesis proposes investigating multi-objective optimization in BN structural learning (BNSL) to balance conflicting criteria. The approach utilizes Pareto sets and multi-objective Genetic Algorithms (GAs). To perform BNSL, a parallel GA with automatic parameter adjustment is developed, called Adaptive Genetic Algorithm with Varying Population Size (AGAVaPS). This proposed algorithm is thoroughly tested on different applications and BNSL. AGAVaPS is found to be a good algorithm to be used in BNSL, performing better than HillClimbing and Tabu Search for some of the metrics measured. The study also explores the impact of data quantization on the BNSL search space. It also introduces a quantization method called CPT Limit-Based Quantization (CLBQ) that balances model quality, data fidelity, and structure score. The effectiveness of this method is tested and its capability of being used in search and score BNSL is investigated. CLBQ is found to be a good quantization algorithm, choosing quantization that has a good mean squared error and modeling well the variables\' distributions. Also, CLBQ is suitable to be used on BNSL. |
publishDate |
2024 |
dc.date.none.fl_str_mv |
2024-02-05 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
format |
doctoralThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://www.teses.usp.br/teses/disponiveis/18/18153/tde-08032024-101119/ |
url |
https://www.teses.usp.br/teses/disponiveis/18/18153/tde-08032024-101119/ |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
|
dc.rights.driver.fl_str_mv |
Liberar o conteúdo para acesso público. info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Liberar o conteúdo para acesso público. |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.coverage.none.fl_str_mv |
|
dc.publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações da USP instname:Universidade de São Paulo (USP) instacron:USP |
instname_str |
Universidade de São Paulo (USP) |
instacron_str |
USP |
institution |
USP |
reponame_str |
Biblioteca Digital de Teses e Dissertações da USP |
collection |
Biblioteca Digital de Teses e Dissertações da USP |
repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP) |
repository.mail.fl_str_mv |
virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br |
_version_ |
1815256796825124864 |