VNIR, XRF, and LIBS spectroscopies for soil sensing on precision agriculture
Autor(a) principal: | |
---|---|
Data de Publicação: | 2021 |
Tipo de documento: | Tese |
Idioma: | eng |
Título da fonte: | Biblioteca Digital de Teses e Dissertações da USP |
Texto Completo: | https://www.teses.usp.br/teses/disponiveis/11/11152/tde-15092021-114515/ |
Resumo: | Visible and near infrared diffuse reflectance spectroscopy (VNIR), X-ray fluorescence spectroscopy (XRF), and laser-induced breakdown spectroscopy (LIBS), are promising techniques for rapid and environmentally-friendly soil fertility characterization. Integrating these sensing tools with the already established analytical methods can enable advances towards the modernization of the traditional analytical procedures by allowing, e.g. , in-situ and mobile laboratory analysis, which, in turn, will enable new paradigm in soil management using precision agriculture approaches. The main objective of this thesis is to develop strategies for using the output generated by VNIR, XRF, and LIBS sensors in the calibration of agronomic algorithms for predicting key soil fertility attributes [clay, organic matter (OM), cation exchange capacity (CEC), pH, base saturation (V), and extractable (ex-) nutrients (ex-P, ex-K, ex-Ca, and ex-Mg)]. A set of 102 soil samples collected from two Brazilian agricultural fields was used. In the first stages, studies were conducted to (i) simplify the soil sample preparation for XRF sensor analysis, (ii) develop a simple and transparent method for XRF data acquisition and processing, and (iii) find an accurate and efficient method for LIBS data modeling. Afterwards, the individual and combined prediction performances of VNIR, XRF, and LIBS were compared. The results showed that overall the predictive performance decreased as follows: LIBS > XRF > VNIR. VNIR confirmed to be the best technique for the prediction of clay and OM content [2.61 ≤ residual prediction deviation (RPD) ≤ 3.37], while the chemical attributes CEC, V, ex-P, ex-K, ex-Ca, and ex-Mg were better predicted (1.82 ≤ RPD ≤ 4.82) by elemental analysis techniques. Regarding multi-sensor approaches, the prediction quality decreased in the order of: VNIR + XRF + LIBS > XRF + LIBS > VNIR + LIBS > VNIR + XRF. Our results indicate that there is no unique optimal sensor combination for predicting all the key soil fertility attributes and that this is attribute specific. However, we also consider that it is too soon to establish a clear trend, which requires further research evaluating larger data sets including other soil types, with greater variability in soil mineralogy, textural classes, attributes concentration range, and submitted to different agricultural practices. Lastly, we evaluated the potential of applying XRF for in-situ analysis, focusing on the effect of both soil moisture content and scanning time on the sensors\' performance. Our results proved that it is possible to make drastic reductions in scanning time (from 90 to 2s) maintaining satisfactory performances (RPD ≥ 1.92) for predicting fertility attributes. Moreover, we showed that although XRF is less sensitive to soil moisture increment when compared to VNIR sensor, the presence of water impacts on the XRF\'s predictive performance and methods for mitigating soil moisture effect should be applied aiming at more accurate in-situ analysis. This thesis brought some advances for the application of VNIR, XRF, and LIBS sensors in Brazilian tropical soils as fast and clean analytical methods for characterizing fertility attributes. The advantages and drawbacks of these techniques were highlighted and directions were left for future research that will continue the technological maturation toward the modernization of soil fertility diagnostics. |
id |
USP_5d93fe5ee374015fa732be25703c528b |
---|---|
oai_identifier_str |
oai:teses.usp.br:tde-15092021-114515 |
network_acronym_str |
USP |
network_name_str |
Biblioteca Digital de Teses e Dissertações da USP |
repository_id_str |
2721 |
spelling |
VNIR, XRF, and LIBS spectroscopies for soil sensing on precision agricultureEspectroscopias VNIR, XRF e LIBS para o sensoriamento do solo na agricultura de precisãoAnálise da fertilidade do soloGreen chemistryHybrid laboratoriesLaboratórios híbridosQuímica verdeSistemas sensores inteligentesSmart sensor systemsSoil fertility testingVisible and near infrared diffuse reflectance spectroscopy (VNIR), X-ray fluorescence spectroscopy (XRF), and laser-induced breakdown spectroscopy (LIBS), are promising techniques for rapid and environmentally-friendly soil fertility characterization. Integrating these sensing tools with the already established analytical methods can enable advances towards the modernization of the traditional analytical procedures by allowing, e.g. , in-situ and mobile laboratory analysis, which, in turn, will enable new paradigm in soil management using precision agriculture approaches. The main objective of this thesis is to develop strategies for using the output generated by VNIR, XRF, and LIBS sensors in the calibration of agronomic algorithms for predicting key soil fertility attributes [clay, organic matter (OM), cation exchange capacity (CEC), pH, base saturation (V), and extractable (ex-) nutrients (ex-P, ex-K, ex-Ca, and ex-Mg)]. A set of 102 soil samples collected from two Brazilian agricultural fields was used. In the first stages, studies were conducted to (i) simplify the soil sample preparation for XRF sensor analysis, (ii) develop a simple and transparent method for XRF data acquisition and processing, and (iii) find an accurate and efficient method for LIBS data modeling. Afterwards, the individual and combined prediction performances of VNIR, XRF, and LIBS were compared. The results showed that overall the predictive performance decreased as follows: LIBS > XRF > VNIR. VNIR confirmed to be the best technique for the prediction of clay and OM content [2.61 ≤ residual prediction deviation (RPD) ≤ 3.37], while the chemical attributes CEC, V, ex-P, ex-K, ex-Ca, and ex-Mg were better predicted (1.82 ≤ RPD ≤ 4.82) by elemental analysis techniques. Regarding multi-sensor approaches, the prediction quality decreased in the order of: VNIR + XRF + LIBS > XRF + LIBS > VNIR + LIBS > VNIR + XRF. Our results indicate that there is no unique optimal sensor combination for predicting all the key soil fertility attributes and that this is attribute specific. However, we also consider that it is too soon to establish a clear trend, which requires further research evaluating larger data sets including other soil types, with greater variability in soil mineralogy, textural classes, attributes concentration range, and submitted to different agricultural practices. Lastly, we evaluated the potential of applying XRF for in-situ analysis, focusing on the effect of both soil moisture content and scanning time on the sensors\' performance. Our results proved that it is possible to make drastic reductions in scanning time (from 90 to 2s) maintaining satisfactory performances (RPD ≥ 1.92) for predicting fertility attributes. Moreover, we showed that although XRF is less sensitive to soil moisture increment when compared to VNIR sensor, the presence of water impacts on the XRF\'s predictive performance and methods for mitigating soil moisture effect should be applied aiming at more accurate in-situ analysis. This thesis brought some advances for the application of VNIR, XRF, and LIBS sensors in Brazilian tropical soils as fast and clean analytical methods for characterizing fertility attributes. The advantages and drawbacks of these techniques were highlighted and directions were left for future research that will continue the technological maturation toward the modernization of soil fertility diagnostics.A espectroscopia de reflectância difusa no visível e infravermelho-próximo (VNIR), a espectroscopia de fluorescência de raios X (XRF) e a espectroscopia de emissão óptica com plasma induzido por laser (LIBS) são técnicas promissoras para uma caracterização rápida e ambientalmente limpa da fertilidade do solo. A integração destas técnicas com os métodos analíticos já estabelecidos de análise da fertilidade do solo pode permitir avanços na modernização de seus procedimentos analíticos, permitindo, e.g., análises in-situ e em laboratoriais móveis, o que, por sua vez, conduziria a um novo paradigma em manejo do solo e em abordagens de agricultura de precisão. O principal objetivo desta tese é desenvolver estratégias para utilizar espectros gerados por sensores VNIR, XRF e LIBS na calibração de algoritmos agronômicos para prever os principais atributos de fertilidade do solo [argila, matéria orgânica (OM), capacidade de troca catiônica (CEC), pH, saturação de bases (V) e nutrientes extraíveis (ex-P, ex-K, ex-Ca e ex- Mg)]. Foi utilizado um conjunto de 102 amostras de solo coletadas em dois talhões agrícolas brasileiros. Nas primeiras etapas desta tese, foram conduzidos estudos para (i) simplificar o preparo de amostras de solo para análises com XRF, (ii) desenvolver um método simples e transparente para aquisição e processamento de dados de XRF, e (iii) encontrar um método preciso e eficiente para modelagem de dados de LIBS. Em seguida, foram comparados os desempenhos de predição individuais e combinados dos sensores VNIR, XRF e LIBS. Os resultados mostraram que, de modo geral, os melhores desempenhos preditivos se dão na seguinte sequencia: LIBS > XRF > VNIR. VNIR confirmou ser a melhor técnica para a predição do conteúdo de argila e OM [2,61 ≤ desvio residual da predição (RPD) ≤ 3,37], enquanto os atributos químicos CEC, V, ex-P, ex-K, ex-Ca e ex-Mg foram melhor preditos (1,82 ≤ RPD ≤ 4,82) pelas técnicas de análise elementar (e.g., XRF e LIBS). Em relação às abordagens multi-sensor, a qualidade da predição diminuiu na seguinte ordem: VNIR + XRF + LIBS > XRF + LIBS > VNIR + LIBS > VNIR + XRF. Nossos resultados indicam que não há uma combinação de sensores ideal única para prever todos os principais atributos de fertilidade do solo e que esta combinação ótima deve ser específica de cada atributo. Contudo, ainda é cedo para esta afirmação, sendo necessário avaliar conjuntos de dados maiores que incluam outros tipos de solos, com variabilidade na mineralogia, classes texturais, faixa de concentração de atributos, e submetidos a diferentes práticas agrícolas. No último capítulo, avaliamos o potencial de aplicação do XRF para análises in-situ, concentrando-nos na avaliação do efeito tanto do conteúdo de umidade do solo quanto do tempo de análise sobre o desempenho dos sensores. Nossos resultados provaram que é possível fazer reduções drásticas no tempo de análise (de 90 para 2s) mantendo desempenhos satisfatórios (RPD ≥ 1,92) para a predição de atributos de fertilidade. Além disso, mostramos que embora o XRF seja menos sensível ao aumento de umidade do solo quando comparado ao sensor VNIR, a presença de água afeta seu desempenho preditivo de modo que métodos para mitigar o efeito da umidade devem ser considerados para análises in-situ mais precisas. Esta tese trouxe alguns avanços para a aplicação dos sensores VNIR, XRF e LIBS em solos tropicais brasileiros como métodos analíticos rápidos e limpos para caracterizar atributos de fertilidade. As vantagens e desvantagens destas técnicas foram destacadas e apontamentos foram deixados para as próximas pesquisas que continuarão o amadurecimento tecnológico em direção a modernização dos diagnósticos de fertilidade do solo.Biblioteca Digitais de Teses e Dissertações da USPMolin, Jose PauloMouazen, Abdul MounemTavares, Tiago Rodrigues2021-07-06info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfhttps://www.teses.usp.br/teses/disponiveis/11/11152/tde-15092021-114515/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesseng2021-09-16T13:58:02Zoai:teses.usp.br:tde-15092021-114515Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212021-09-16T13:58:02Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false |
dc.title.none.fl_str_mv |
VNIR, XRF, and LIBS spectroscopies for soil sensing on precision agriculture Espectroscopias VNIR, XRF e LIBS para o sensoriamento do solo na agricultura de precisão |
title |
VNIR, XRF, and LIBS spectroscopies for soil sensing on precision agriculture |
spellingShingle |
VNIR, XRF, and LIBS spectroscopies for soil sensing on precision agriculture Tavares, Tiago Rodrigues Análise da fertilidade do solo Green chemistry Hybrid laboratories Laboratórios híbridos Química verde Sistemas sensores inteligentes Smart sensor systems Soil fertility testing |
title_short |
VNIR, XRF, and LIBS spectroscopies for soil sensing on precision agriculture |
title_full |
VNIR, XRF, and LIBS spectroscopies for soil sensing on precision agriculture |
title_fullStr |
VNIR, XRF, and LIBS spectroscopies for soil sensing on precision agriculture |
title_full_unstemmed |
VNIR, XRF, and LIBS spectroscopies for soil sensing on precision agriculture |
title_sort |
VNIR, XRF, and LIBS spectroscopies for soil sensing on precision agriculture |
author |
Tavares, Tiago Rodrigues |
author_facet |
Tavares, Tiago Rodrigues |
author_role |
author |
dc.contributor.none.fl_str_mv |
Molin, Jose Paulo Mouazen, Abdul Mounem |
dc.contributor.author.fl_str_mv |
Tavares, Tiago Rodrigues |
dc.subject.por.fl_str_mv |
Análise da fertilidade do solo Green chemistry Hybrid laboratories Laboratórios híbridos Química verde Sistemas sensores inteligentes Smart sensor systems Soil fertility testing |
topic |
Análise da fertilidade do solo Green chemistry Hybrid laboratories Laboratórios híbridos Química verde Sistemas sensores inteligentes Smart sensor systems Soil fertility testing |
description |
Visible and near infrared diffuse reflectance spectroscopy (VNIR), X-ray fluorescence spectroscopy (XRF), and laser-induced breakdown spectroscopy (LIBS), are promising techniques for rapid and environmentally-friendly soil fertility characterization. Integrating these sensing tools with the already established analytical methods can enable advances towards the modernization of the traditional analytical procedures by allowing, e.g. , in-situ and mobile laboratory analysis, which, in turn, will enable new paradigm in soil management using precision agriculture approaches. The main objective of this thesis is to develop strategies for using the output generated by VNIR, XRF, and LIBS sensors in the calibration of agronomic algorithms for predicting key soil fertility attributes [clay, organic matter (OM), cation exchange capacity (CEC), pH, base saturation (V), and extractable (ex-) nutrients (ex-P, ex-K, ex-Ca, and ex-Mg)]. A set of 102 soil samples collected from two Brazilian agricultural fields was used. In the first stages, studies were conducted to (i) simplify the soil sample preparation for XRF sensor analysis, (ii) develop a simple and transparent method for XRF data acquisition and processing, and (iii) find an accurate and efficient method for LIBS data modeling. Afterwards, the individual and combined prediction performances of VNIR, XRF, and LIBS were compared. The results showed that overall the predictive performance decreased as follows: LIBS > XRF > VNIR. VNIR confirmed to be the best technique for the prediction of clay and OM content [2.61 ≤ residual prediction deviation (RPD) ≤ 3.37], while the chemical attributes CEC, V, ex-P, ex-K, ex-Ca, and ex-Mg were better predicted (1.82 ≤ RPD ≤ 4.82) by elemental analysis techniques. Regarding multi-sensor approaches, the prediction quality decreased in the order of: VNIR + XRF + LIBS > XRF + LIBS > VNIR + LIBS > VNIR + XRF. Our results indicate that there is no unique optimal sensor combination for predicting all the key soil fertility attributes and that this is attribute specific. However, we also consider that it is too soon to establish a clear trend, which requires further research evaluating larger data sets including other soil types, with greater variability in soil mineralogy, textural classes, attributes concentration range, and submitted to different agricultural practices. Lastly, we evaluated the potential of applying XRF for in-situ analysis, focusing on the effect of both soil moisture content and scanning time on the sensors\' performance. Our results proved that it is possible to make drastic reductions in scanning time (from 90 to 2s) maintaining satisfactory performances (RPD ≥ 1.92) for predicting fertility attributes. Moreover, we showed that although XRF is less sensitive to soil moisture increment when compared to VNIR sensor, the presence of water impacts on the XRF\'s predictive performance and methods for mitigating soil moisture effect should be applied aiming at more accurate in-situ analysis. This thesis brought some advances for the application of VNIR, XRF, and LIBS sensors in Brazilian tropical soils as fast and clean analytical methods for characterizing fertility attributes. The advantages and drawbacks of these techniques were highlighted and directions were left for future research that will continue the technological maturation toward the modernization of soil fertility diagnostics. |
publishDate |
2021 |
dc.date.none.fl_str_mv |
2021-07-06 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
format |
doctoralThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://www.teses.usp.br/teses/disponiveis/11/11152/tde-15092021-114515/ |
url |
https://www.teses.usp.br/teses/disponiveis/11/11152/tde-15092021-114515/ |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
|
dc.rights.driver.fl_str_mv |
Liberar o conteúdo para acesso público. info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Liberar o conteúdo para acesso público. |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.coverage.none.fl_str_mv |
|
dc.publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações da USP instname:Universidade de São Paulo (USP) instacron:USP |
instname_str |
Universidade de São Paulo (USP) |
instacron_str |
USP |
institution |
USP |
reponame_str |
Biblioteca Digital de Teses e Dissertações da USP |
collection |
Biblioteca Digital de Teses e Dissertações da USP |
repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP) |
repository.mail.fl_str_mv |
virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br |
_version_ |
1815257030900842496 |