Two-phase methods to segment man-made objects around reservoirs
Autor(a) principal: | |
---|---|
Data de Publicação: | 2023 |
Tipo de documento: | Tese |
Idioma: | eng |
Título da fonte: | Biblioteca Digital de Teses e Dissertações da USP |
Texto Completo: | https://www.teses.usp.br/teses/disponiveis/45/45134/tde-05062023-071021/ |
Resumo: | Reservoirs are fundamental infrastructures for the management of water resources. They reduce the effects of interseasonal and interannual streamflow fluctuations and hence facilitate water supply, hydroelectric power generation, and flood control, to name a few. There is a significant interaction between the environment and reservoirs. For example, reservoirs affect the quality of the water downstream of their dams, and human activities affect the quality of the reservoirs inflowing water and its chemical and biological processes. Construction around reservoirs is a human activity that can negatively impact the reservoirs water quality. This social issue can be detected by segmenting the man-made objects around reservoirs in the Remote Sensing (RS) images. Traditional pixel-based, Object-Based (OB), and Deep-Learning (DL) methods are three Land-Cover Mapping (LCM) approaches. We developed a new approach based on image processing techniques and the OB method for LCM of the selected regions around reservoirs. Disadvantages of the OB approach, such as the high dependency of results on the choice of parameters, led us to use DL to circumvent excessive parameter specification and tunning that are often required by OB methods. In recent years, DL has attracted considerable attention as a method for segmenting the RS imagery semantically and has achieved remarkable success. To segment man-made objects around the reservoirs utilizing an end-to-end workflow, segmenting reservoirs and detaching the Region of Interest (RoI) around them are essential. However, reservoirs are always considered in a broad class termed water bodies in RS semantic segmentation studies. Besides, man-made object semantic segmentation in the RoIaR is not explored in the literature. Moreover, man-made object segmentation in high-resolution images, especially countryside man-made object segmentation, is not extensively explored in the literature. In this research, we develop a new approach based on DL and image processing techniques for man-made object segmentation around the reservoirs. In the proposed two-phase workflow, the reservoir is initially segmented using a DL model. Then, a post-processing stage is proposed to remove errors such as floating vegetation. Next, the RoI around the Reservoir (RoIaR) is detached using the proposed image processing techniques. Finally, the man-made objects in the RoIaR are segmented by a DL model. We collected high-resolution Google Earth (GE) images of eight reservoirs in Brazil, mainly located in the countrysides, over two different available years to train the workflow models. Furthermore, we validated the prepared workflow with a test dataset not seen during training. The F1-scores of the phase-1 semantic segmentation stage, post-processing stage, and phase-2 semantic segmentation stage on the external test set are 92.54%, 94.68%, and 88.11%, respectively, which show high generalization ability of the prepared workflow. |
id |
USP_5dd4e6636b02d43896b5bbfedf399b2f |
---|---|
oai_identifier_str |
oai:teses.usp.br:tde-05062023-071021 |
network_acronym_str |
USP |
network_name_str |
Biblioteca Digital de Teses e Dissertações da USP |
repository_id_str |
2721 |
spelling |
Two-phase methods to segment man-made objects around reservoirsMétodos de duas fases para segmentar áreas construídas ao redor de reservatórios.Aprendizagem profundaDeep learningHigh-resolution RS imageryImage processingImagem RS de alta resoluçãoMan-made object segmentationObject-based methodProcessamento de imagemReservoir segmentationSegmentação de reservatóriosSegmentação feita pelo homemReservoirs are fundamental infrastructures for the management of water resources. They reduce the effects of interseasonal and interannual streamflow fluctuations and hence facilitate water supply, hydroelectric power generation, and flood control, to name a few. There is a significant interaction between the environment and reservoirs. For example, reservoirs affect the quality of the water downstream of their dams, and human activities affect the quality of the reservoirs inflowing water and its chemical and biological processes. Construction around reservoirs is a human activity that can negatively impact the reservoirs water quality. This social issue can be detected by segmenting the man-made objects around reservoirs in the Remote Sensing (RS) images. Traditional pixel-based, Object-Based (OB), and Deep-Learning (DL) methods are three Land-Cover Mapping (LCM) approaches. We developed a new approach based on image processing techniques and the OB method for LCM of the selected regions around reservoirs. Disadvantages of the OB approach, such as the high dependency of results on the choice of parameters, led us to use DL to circumvent excessive parameter specification and tunning that are often required by OB methods. In recent years, DL has attracted considerable attention as a method for segmenting the RS imagery semantically and has achieved remarkable success. To segment man-made objects around the reservoirs utilizing an end-to-end workflow, segmenting reservoirs and detaching the Region of Interest (RoI) around them are essential. However, reservoirs are always considered in a broad class termed water bodies in RS semantic segmentation studies. Besides, man-made object semantic segmentation in the RoIaR is not explored in the literature. Moreover, man-made object segmentation in high-resolution images, especially countryside man-made object segmentation, is not extensively explored in the literature. In this research, we develop a new approach based on DL and image processing techniques for man-made object segmentation around the reservoirs. In the proposed two-phase workflow, the reservoir is initially segmented using a DL model. Then, a post-processing stage is proposed to remove errors such as floating vegetation. Next, the RoI around the Reservoir (RoIaR) is detached using the proposed image processing techniques. Finally, the man-made objects in the RoIaR are segmented by a DL model. We collected high-resolution Google Earth (GE) images of eight reservoirs in Brazil, mainly located in the countrysides, over two different available years to train the workflow models. Furthermore, we validated the prepared workflow with a test dataset not seen during training. The F1-scores of the phase-1 semantic segmentation stage, post-processing stage, and phase-2 semantic segmentation stage on the external test set are 92.54%, 94.68%, and 88.11%, respectively, which show high generalization ability of the prepared workflow.Os reservatórios são infraestruturas fundamentais para a gestão dos recursos hídricos. Eles reduzem os efeitos das flutuações de fluxo de água intersazonais e interanuais e, portanto, facilitam o abastecimento de água, a geração de energia hidrelétrica e o controle de enchentes, para citar alguns exemplos. Há uma interação significativa entre o meio ambiente e os reservatórios. Por exemplo, as atividades humanas podem afetar a qualidade da água afluente do reservatório e seus processos químicos e biológicos. As construções ao redor dos reservatórios são um exemplo de tais atividades. Essa questão social pode ser detectada segmentando os objetos criados pelo homem em torno dos reservatórios nas imagens de sensoriamento remoto (RS). Os métodos tradicionais baseados em pixels, baseados em objetos (OB) e de aprendizado profundo são três abordagens de mapeamento de cobertura da terra (LCM). Desenvolvemos uma nova abordagem baseada em técnicas de processamento de imagens e no método OB para segmentar regiões selecionadas ao redor de reservatórios. As desvantagens da abordagem OB, como a alta dependência dos resultados na escolha dos parâmetros, nos levaram a usar DL para contornar a necessidade excessiva de especificação de parâmetros e o ajuste frequentemente exigido pelos métodos OB. Nos últimos anos, o DL atraiu considerável atenção como um método para segmentar imagens das imagens do RS e alcançou um sucesso notável. Para segmentar objetos artificiais em torno dos reservatórios utilizando um fluxo de trabalho de ponta a ponta, segmentar os reservatórios e destacar a região de interesse (ROI) em torno deles é essencial. No entanto, os reservatórios são normalmente considerados em uma classe ampla denominada corpos dágua. Além disso, os estudos de segmentação de objetos feitos pelo homem implementados em imagens RS de alta resolução urbana consideram menos frequentemente construções na zona rural. Portanto, eles frequentemente não consideram estruturas desafiadoras de cobertura do solo, como estradas não asfaltadas. Nesta pesquisa, desenvolvemos uma nova abordagem baseada em técnicas de processamento de DL e imagens para segmentação de objetos feitos pelo homem em torno dos reservatórios. No fluxo de trabalho em duas fases proposto, o reservatório é inicialmente segmentado usando um modelo DL. Em seguida, uma etapa de pós-processamento é proposta para remover erros da vegetação flutuante nos reservatórios. Em seguida, a RoI ao redor do reservatório (RoIaR) é destacada usando as técnicas de processamento de imagem. Finalmente, os objetos artificiais na roiar são segmentados por um modelo DL. Coletamos imagens de alta resolução do Google Earth (GE) de oito reservatórios no Brasil, localizados principalmente nas paisagens, em dois anos disponíveis para treinar os modelos de fluxo de trabalho. Além disso, validamos o fluxo de trabalho preparado com um conjunto de dados de teste não visto durante o treinamento. As pontuações F1 do estágio de segmentação semântica da fase 1, estágio de pós-processamento e estágio de segmentação semântica da fase 2 no conjunto de teste externo são 92,54%, 94,68% e 88,11%, respectivamente, que mostram alta capacidade de generalização do fluxo de trabalho preparado.Biblioteca Digitais de Teses e Dissertações da USPCesar Junior, Roberto MarcondesHamidishad, Nayereh2023-04-17info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfhttps://www.teses.usp.br/teses/disponiveis/45/45134/tde-05062023-071021/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesseng2023-06-07T16:02:39Zoai:teses.usp.br:tde-05062023-071021Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212023-06-07T16:02:39Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false |
dc.title.none.fl_str_mv |
Two-phase methods to segment man-made objects around reservoirs Métodos de duas fases para segmentar áreas construídas ao redor de reservatórios. |
title |
Two-phase methods to segment man-made objects around reservoirs |
spellingShingle |
Two-phase methods to segment man-made objects around reservoirs Hamidishad, Nayereh Aprendizagem profunda Deep learning High-resolution RS imagery Image processing Imagem RS de alta resolução Man-made object segmentation Object-based method Processamento de imagem Reservoir segmentation Segmentação de reservatórios Segmentação feita pelo homem |
title_short |
Two-phase methods to segment man-made objects around reservoirs |
title_full |
Two-phase methods to segment man-made objects around reservoirs |
title_fullStr |
Two-phase methods to segment man-made objects around reservoirs |
title_full_unstemmed |
Two-phase methods to segment man-made objects around reservoirs |
title_sort |
Two-phase methods to segment man-made objects around reservoirs |
author |
Hamidishad, Nayereh |
author_facet |
Hamidishad, Nayereh |
author_role |
author |
dc.contributor.none.fl_str_mv |
Cesar Junior, Roberto Marcondes |
dc.contributor.author.fl_str_mv |
Hamidishad, Nayereh |
dc.subject.por.fl_str_mv |
Aprendizagem profunda Deep learning High-resolution RS imagery Image processing Imagem RS de alta resolução Man-made object segmentation Object-based method Processamento de imagem Reservoir segmentation Segmentação de reservatórios Segmentação feita pelo homem |
topic |
Aprendizagem profunda Deep learning High-resolution RS imagery Image processing Imagem RS de alta resolução Man-made object segmentation Object-based method Processamento de imagem Reservoir segmentation Segmentação de reservatórios Segmentação feita pelo homem |
description |
Reservoirs are fundamental infrastructures for the management of water resources. They reduce the effects of interseasonal and interannual streamflow fluctuations and hence facilitate water supply, hydroelectric power generation, and flood control, to name a few. There is a significant interaction between the environment and reservoirs. For example, reservoirs affect the quality of the water downstream of their dams, and human activities affect the quality of the reservoirs inflowing water and its chemical and biological processes. Construction around reservoirs is a human activity that can negatively impact the reservoirs water quality. This social issue can be detected by segmenting the man-made objects around reservoirs in the Remote Sensing (RS) images. Traditional pixel-based, Object-Based (OB), and Deep-Learning (DL) methods are three Land-Cover Mapping (LCM) approaches. We developed a new approach based on image processing techniques and the OB method for LCM of the selected regions around reservoirs. Disadvantages of the OB approach, such as the high dependency of results on the choice of parameters, led us to use DL to circumvent excessive parameter specification and tunning that are often required by OB methods. In recent years, DL has attracted considerable attention as a method for segmenting the RS imagery semantically and has achieved remarkable success. To segment man-made objects around the reservoirs utilizing an end-to-end workflow, segmenting reservoirs and detaching the Region of Interest (RoI) around them are essential. However, reservoirs are always considered in a broad class termed water bodies in RS semantic segmentation studies. Besides, man-made object semantic segmentation in the RoIaR is not explored in the literature. Moreover, man-made object segmentation in high-resolution images, especially countryside man-made object segmentation, is not extensively explored in the literature. In this research, we develop a new approach based on DL and image processing techniques for man-made object segmentation around the reservoirs. In the proposed two-phase workflow, the reservoir is initially segmented using a DL model. Then, a post-processing stage is proposed to remove errors such as floating vegetation. Next, the RoI around the Reservoir (RoIaR) is detached using the proposed image processing techniques. Finally, the man-made objects in the RoIaR are segmented by a DL model. We collected high-resolution Google Earth (GE) images of eight reservoirs in Brazil, mainly located in the countrysides, over two different available years to train the workflow models. Furthermore, we validated the prepared workflow with a test dataset not seen during training. The F1-scores of the phase-1 semantic segmentation stage, post-processing stage, and phase-2 semantic segmentation stage on the external test set are 92.54%, 94.68%, and 88.11%, respectively, which show high generalization ability of the prepared workflow. |
publishDate |
2023 |
dc.date.none.fl_str_mv |
2023-04-17 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
format |
doctoralThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://www.teses.usp.br/teses/disponiveis/45/45134/tde-05062023-071021/ |
url |
https://www.teses.usp.br/teses/disponiveis/45/45134/tde-05062023-071021/ |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
|
dc.rights.driver.fl_str_mv |
Liberar o conteúdo para acesso público. info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Liberar o conteúdo para acesso público. |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.coverage.none.fl_str_mv |
|
dc.publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações da USP instname:Universidade de São Paulo (USP) instacron:USP |
instname_str |
Universidade de São Paulo (USP) |
instacron_str |
USP |
institution |
USP |
reponame_str |
Biblioteca Digital de Teses e Dissertações da USP |
collection |
Biblioteca Digital de Teses e Dissertações da USP |
repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP) |
repository.mail.fl_str_mv |
virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br |
_version_ |
1815256696112545792 |