End-to-end learning for autonomous vehicles: a narrow approach

Detalhes bibliográficos
Autor(a) principal: Heringer, Adauton Machado
Data de Publicação: 2023
Tipo de documento: Dissertação
Idioma: eng
Título da fonte: Biblioteca Digital de Teses e Dissertações da USP
Texto Completo: https://www.teses.usp.br/teses/disponiveis/45/45134/tde-19072023-053510/
Resumo: Autonomous vehicles are long promised to revolutionize our civilization. Nevertheless, it has consistently failed to meet expectations in the past two decades. Based on the fundamental difference between narrow and general artificial intelligence and equipped with the theoretical approach of sociotechnical imaginaries, we criticize general autonomy: the study of autonomous vehicles as envisaged by its artificially fabricated sociotechnical imaginary utopia. By contrast, we conceptualize narrow autonomy as the study of context-limited autonomous vehicles. Accordingly, we propose a narrow approach: instead of training a vehicle in a context-free environment, we set clear boundaries for the path the vehicle is supposed to drive. Using the latest advancements in end-to-end deep learning, we trained a convolutional neural network to map images and high-level commands straight to vehicle control, such as steering angle, throttle, and brake, in a simulated environment. Although this is a multidisciplinary conceptual work, our results indicate that by delimiting its path we can significantly improve performance and contribute to the advancements of autonomous technology.
id USP_5e07022b7b7bbe20d2fbf114ecca1e57
oai_identifier_str oai:teses.usp.br:tde-19072023-053510
network_acronym_str USP
network_name_str Biblioteca Digital de Teses e Dissertações da USP
repository_id_str 2721
spelling End-to-end learning for autonomous vehicles: a narrow approachAprendizado end-to-end para veículos autônomos: uma abordagem restritaAprendizado end-to-endArtificial general intelligenceAutonomia restritaAutonomous vehiclesConvolutional neural networksEnd-to-end learningImaginário sociotécnicoInteligência artificial geralNarrow autonomyRedes neurais convolucionaisSociotechnical imaginaryVeículos autônomosAutonomous vehicles are long promised to revolutionize our civilization. Nevertheless, it has consistently failed to meet expectations in the past two decades. Based on the fundamental difference between narrow and general artificial intelligence and equipped with the theoretical approach of sociotechnical imaginaries, we criticize general autonomy: the study of autonomous vehicles as envisaged by its artificially fabricated sociotechnical imaginary utopia. By contrast, we conceptualize narrow autonomy as the study of context-limited autonomous vehicles. Accordingly, we propose a narrow approach: instead of training a vehicle in a context-free environment, we set clear boundaries for the path the vehicle is supposed to drive. Using the latest advancements in end-to-end deep learning, we trained a convolutional neural network to map images and high-level commands straight to vehicle control, such as steering angle, throttle, and brake, in a simulated environment. Although this is a multidisciplinary conceptual work, our results indicate that by delimiting its path we can significantly improve performance and contribute to the advancements of autonomous technology.Veículos autônomos tem prometido revolucionar nossa civilização. Contudo, nas últimas duas décadas as expectativas tem sido consistentemente frustradas. Baseado na diferença entre inteligência artificial geral e restrita, e equipado com o arcabouço teórico dos imaginários sociotécnicos, criticamos a autonomia geral: o estudo dos veículos autonomos como previsto por seu artificialmente fabricado imaginário sociotécnico utópico. Por outro lado, conceitualizamos autonomia restrita como o estudo de veículos autônomos em contextos limitados. Desta forma, propomos uma abordagem restrita: em vez de treinar um veículo em um contexto ilimitado, delimitamos precisamente o caminho em que ele deve dirigir. Acompanhando os últimos avanços no aprendizado profundo end-to-end, treinamos uma rede neural convolucional para mapear imagens e comandos de alto nível diretamente para o controle do veículo como esterçamento, aceleração e frenagem em um ambiente simulado. Embora este seja um trabalho conceitual e multidisciplinar, nossos resultados indicam que podemos melhorar significativamente o desempenho do veículo ao delimitar seu caminho, e dessa forma contribuir com o avanço da tecnologia autônoma.Biblioteca Digitais de Teses e Dissertações da USPSilva, Flavio Soares Correa daHeringer, Adauton Machado2023-06-23info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttps://www.teses.usp.br/teses/disponiveis/45/45134/tde-19072023-053510/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesseng2023-07-19T20:53:08Zoai:teses.usp.br:tde-19072023-053510Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212023-07-19T20:53:08Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false
dc.title.none.fl_str_mv End-to-end learning for autonomous vehicles: a narrow approach
Aprendizado end-to-end para veículos autônomos: uma abordagem restrita
title End-to-end learning for autonomous vehicles: a narrow approach
spellingShingle End-to-end learning for autonomous vehicles: a narrow approach
Heringer, Adauton Machado
Aprendizado end-to-end
Artificial general intelligence
Autonomia restrita
Autonomous vehicles
Convolutional neural networks
End-to-end learning
Imaginário sociotécnico
Inteligência artificial geral
Narrow autonomy
Redes neurais convolucionais
Sociotechnical imaginary
Veículos autônomos
title_short End-to-end learning for autonomous vehicles: a narrow approach
title_full End-to-end learning for autonomous vehicles: a narrow approach
title_fullStr End-to-end learning for autonomous vehicles: a narrow approach
title_full_unstemmed End-to-end learning for autonomous vehicles: a narrow approach
title_sort End-to-end learning for autonomous vehicles: a narrow approach
author Heringer, Adauton Machado
author_facet Heringer, Adauton Machado
author_role author
dc.contributor.none.fl_str_mv Silva, Flavio Soares Correa da
dc.contributor.author.fl_str_mv Heringer, Adauton Machado
dc.subject.por.fl_str_mv Aprendizado end-to-end
Artificial general intelligence
Autonomia restrita
Autonomous vehicles
Convolutional neural networks
End-to-end learning
Imaginário sociotécnico
Inteligência artificial geral
Narrow autonomy
Redes neurais convolucionais
Sociotechnical imaginary
Veículos autônomos
topic Aprendizado end-to-end
Artificial general intelligence
Autonomia restrita
Autonomous vehicles
Convolutional neural networks
End-to-end learning
Imaginário sociotécnico
Inteligência artificial geral
Narrow autonomy
Redes neurais convolucionais
Sociotechnical imaginary
Veículos autônomos
description Autonomous vehicles are long promised to revolutionize our civilization. Nevertheless, it has consistently failed to meet expectations in the past two decades. Based on the fundamental difference between narrow and general artificial intelligence and equipped with the theoretical approach of sociotechnical imaginaries, we criticize general autonomy: the study of autonomous vehicles as envisaged by its artificially fabricated sociotechnical imaginary utopia. By contrast, we conceptualize narrow autonomy as the study of context-limited autonomous vehicles. Accordingly, we propose a narrow approach: instead of training a vehicle in a context-free environment, we set clear boundaries for the path the vehicle is supposed to drive. Using the latest advancements in end-to-end deep learning, we trained a convolutional neural network to map images and high-level commands straight to vehicle control, such as steering angle, throttle, and brake, in a simulated environment. Although this is a multidisciplinary conceptual work, our results indicate that by delimiting its path we can significantly improve performance and contribute to the advancements of autonomous technology.
publishDate 2023
dc.date.none.fl_str_mv 2023-06-23
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://www.teses.usp.br/teses/disponiveis/45/45134/tde-19072023-053510/
url https://www.teses.usp.br/teses/disponiveis/45/45134/tde-19072023-053510/
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv
dc.rights.driver.fl_str_mv Liberar o conteúdo para acesso público.
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Liberar o conteúdo para acesso público.
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.coverage.none.fl_str_mv
dc.publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
dc.source.none.fl_str_mv
reponame:Biblioteca Digital de Teses e Dissertações da USP
instname:Universidade de São Paulo (USP)
instacron:USP
instname_str Universidade de São Paulo (USP)
instacron_str USP
institution USP
reponame_str Biblioteca Digital de Teses e Dissertações da USP
collection Biblioteca Digital de Teses e Dissertações da USP
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)
repository.mail.fl_str_mv virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br
_version_ 1815257174515908608