End-to-end learning for autonomous vehicles: a narrow approach
Autor(a) principal: | |
---|---|
Data de Publicação: | 2023 |
Tipo de documento: | Dissertação |
Idioma: | eng |
Título da fonte: | Biblioteca Digital de Teses e Dissertações da USP |
Texto Completo: | https://www.teses.usp.br/teses/disponiveis/45/45134/tde-19072023-053510/ |
Resumo: | Autonomous vehicles are long promised to revolutionize our civilization. Nevertheless, it has consistently failed to meet expectations in the past two decades. Based on the fundamental difference between narrow and general artificial intelligence and equipped with the theoretical approach of sociotechnical imaginaries, we criticize general autonomy: the study of autonomous vehicles as envisaged by its artificially fabricated sociotechnical imaginary utopia. By contrast, we conceptualize narrow autonomy as the study of context-limited autonomous vehicles. Accordingly, we propose a narrow approach: instead of training a vehicle in a context-free environment, we set clear boundaries for the path the vehicle is supposed to drive. Using the latest advancements in end-to-end deep learning, we trained a convolutional neural network to map images and high-level commands straight to vehicle control, such as steering angle, throttle, and brake, in a simulated environment. Although this is a multidisciplinary conceptual work, our results indicate that by delimiting its path we can significantly improve performance and contribute to the advancements of autonomous technology. |
id |
USP_5e07022b7b7bbe20d2fbf114ecca1e57 |
---|---|
oai_identifier_str |
oai:teses.usp.br:tde-19072023-053510 |
network_acronym_str |
USP |
network_name_str |
Biblioteca Digital de Teses e Dissertações da USP |
repository_id_str |
2721 |
spelling |
End-to-end learning for autonomous vehicles: a narrow approachAprendizado end-to-end para veículos autônomos: uma abordagem restritaAprendizado end-to-endArtificial general intelligenceAutonomia restritaAutonomous vehiclesConvolutional neural networksEnd-to-end learningImaginário sociotécnicoInteligência artificial geralNarrow autonomyRedes neurais convolucionaisSociotechnical imaginaryVeículos autônomosAutonomous vehicles are long promised to revolutionize our civilization. Nevertheless, it has consistently failed to meet expectations in the past two decades. Based on the fundamental difference between narrow and general artificial intelligence and equipped with the theoretical approach of sociotechnical imaginaries, we criticize general autonomy: the study of autonomous vehicles as envisaged by its artificially fabricated sociotechnical imaginary utopia. By contrast, we conceptualize narrow autonomy as the study of context-limited autonomous vehicles. Accordingly, we propose a narrow approach: instead of training a vehicle in a context-free environment, we set clear boundaries for the path the vehicle is supposed to drive. Using the latest advancements in end-to-end deep learning, we trained a convolutional neural network to map images and high-level commands straight to vehicle control, such as steering angle, throttle, and brake, in a simulated environment. Although this is a multidisciplinary conceptual work, our results indicate that by delimiting its path we can significantly improve performance and contribute to the advancements of autonomous technology.Veículos autônomos tem prometido revolucionar nossa civilização. Contudo, nas últimas duas décadas as expectativas tem sido consistentemente frustradas. Baseado na diferença entre inteligência artificial geral e restrita, e equipado com o arcabouço teórico dos imaginários sociotécnicos, criticamos a autonomia geral: o estudo dos veículos autonomos como previsto por seu artificialmente fabricado imaginário sociotécnico utópico. Por outro lado, conceitualizamos autonomia restrita como o estudo de veículos autônomos em contextos limitados. Desta forma, propomos uma abordagem restrita: em vez de treinar um veículo em um contexto ilimitado, delimitamos precisamente o caminho em que ele deve dirigir. Acompanhando os últimos avanços no aprendizado profundo end-to-end, treinamos uma rede neural convolucional para mapear imagens e comandos de alto nível diretamente para o controle do veículo como esterçamento, aceleração e frenagem em um ambiente simulado. Embora este seja um trabalho conceitual e multidisciplinar, nossos resultados indicam que podemos melhorar significativamente o desempenho do veículo ao delimitar seu caminho, e dessa forma contribuir com o avanço da tecnologia autônoma.Biblioteca Digitais de Teses e Dissertações da USPSilva, Flavio Soares Correa daHeringer, Adauton Machado2023-06-23info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttps://www.teses.usp.br/teses/disponiveis/45/45134/tde-19072023-053510/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesseng2023-07-19T20:53:08Zoai:teses.usp.br:tde-19072023-053510Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212023-07-19T20:53:08Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false |
dc.title.none.fl_str_mv |
End-to-end learning for autonomous vehicles: a narrow approach Aprendizado end-to-end para veículos autônomos: uma abordagem restrita |
title |
End-to-end learning for autonomous vehicles: a narrow approach |
spellingShingle |
End-to-end learning for autonomous vehicles: a narrow approach Heringer, Adauton Machado Aprendizado end-to-end Artificial general intelligence Autonomia restrita Autonomous vehicles Convolutional neural networks End-to-end learning Imaginário sociotécnico Inteligência artificial geral Narrow autonomy Redes neurais convolucionais Sociotechnical imaginary Veículos autônomos |
title_short |
End-to-end learning for autonomous vehicles: a narrow approach |
title_full |
End-to-end learning for autonomous vehicles: a narrow approach |
title_fullStr |
End-to-end learning for autonomous vehicles: a narrow approach |
title_full_unstemmed |
End-to-end learning for autonomous vehicles: a narrow approach |
title_sort |
End-to-end learning for autonomous vehicles: a narrow approach |
author |
Heringer, Adauton Machado |
author_facet |
Heringer, Adauton Machado |
author_role |
author |
dc.contributor.none.fl_str_mv |
Silva, Flavio Soares Correa da |
dc.contributor.author.fl_str_mv |
Heringer, Adauton Machado |
dc.subject.por.fl_str_mv |
Aprendizado end-to-end Artificial general intelligence Autonomia restrita Autonomous vehicles Convolutional neural networks End-to-end learning Imaginário sociotécnico Inteligência artificial geral Narrow autonomy Redes neurais convolucionais Sociotechnical imaginary Veículos autônomos |
topic |
Aprendizado end-to-end Artificial general intelligence Autonomia restrita Autonomous vehicles Convolutional neural networks End-to-end learning Imaginário sociotécnico Inteligência artificial geral Narrow autonomy Redes neurais convolucionais Sociotechnical imaginary Veículos autônomos |
description |
Autonomous vehicles are long promised to revolutionize our civilization. Nevertheless, it has consistently failed to meet expectations in the past two decades. Based on the fundamental difference between narrow and general artificial intelligence and equipped with the theoretical approach of sociotechnical imaginaries, we criticize general autonomy: the study of autonomous vehicles as envisaged by its artificially fabricated sociotechnical imaginary utopia. By contrast, we conceptualize narrow autonomy as the study of context-limited autonomous vehicles. Accordingly, we propose a narrow approach: instead of training a vehicle in a context-free environment, we set clear boundaries for the path the vehicle is supposed to drive. Using the latest advancements in end-to-end deep learning, we trained a convolutional neural network to map images and high-level commands straight to vehicle control, such as steering angle, throttle, and brake, in a simulated environment. Although this is a multidisciplinary conceptual work, our results indicate that by delimiting its path we can significantly improve performance and contribute to the advancements of autonomous technology. |
publishDate |
2023 |
dc.date.none.fl_str_mv |
2023-06-23 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://www.teses.usp.br/teses/disponiveis/45/45134/tde-19072023-053510/ |
url |
https://www.teses.usp.br/teses/disponiveis/45/45134/tde-19072023-053510/ |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
|
dc.rights.driver.fl_str_mv |
Liberar o conteúdo para acesso público. info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Liberar o conteúdo para acesso público. |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.coverage.none.fl_str_mv |
|
dc.publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações da USP instname:Universidade de São Paulo (USP) instacron:USP |
instname_str |
Universidade de São Paulo (USP) |
instacron_str |
USP |
institution |
USP |
reponame_str |
Biblioteca Digital de Teses e Dissertações da USP |
collection |
Biblioteca Digital de Teses e Dissertações da USP |
repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP) |
repository.mail.fl_str_mv |
virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br |
_version_ |
1815257174515908608 |