TRISS-AG: um algoritmo genético para ajuste do método TRISS de previsão de sobrevivência de pacientes de trauma
Autor(a) principal: | |
---|---|
Data de Publicação: | 2021 |
Tipo de documento: | Dissertação |
Idioma: | por |
Título da fonte: | Biblioteca Digital de Teses e Dissertações da USP |
Texto Completo: | https://www.teses.usp.br/teses/disponiveis/55/55137/tde-11112021-150130/ |
Resumo: | O método TRISS é amplamente utilizado para previsão de sobrevivência de pacientes de trauma, tendo papel chave tanto para guiar decisões clínicas no momento do atendimento como posteriormente para avaliar o desempenho do serviço de saúde. Embora seja o mais usado no mundo todo, ele tem sido criticado por não refletir a realidade do atendimento médico de países em desenvolvimento, pois foi construído por meio de uma regressão logística usando dados de pacientes norte-americanos há mais de três décadas. Estudos tem sido feitos buscando adaptá-lo usando dados locais e técnicas alternativas, incluindo inteligência computacional. Propõe-se neste trabalho uma abordagem para ajustar o TRISS usando algoritmos genéticos, testando se é possível utilizar tal técnica e superar o desempenho do TRISS original quando aplicado a dados que representem tal realidade. Inicialmente foram sintetizados cinco bancos de dados simulando pacientes atendidos por hospitais de qualidade progressivamente inferior. O desempenho do TRISS em prever a sobrevivência destes pacientes foi medido utilizando curvas ROC, mostrandose progressivamente menor, confirmando que o TRISS apresenta problemas em realidades de atendimento piores. Foi, então, desenvolvido o TRISS-AG, um algoritmo genético para ajustar a equação do TRISS. O desempenho do TRISS-AG e do TRISS aplicados aos bancos de dados foi comparado com base na quantidade de acertos na previsão de sobrevivência e o TRISS-AG apresentou desempenho melhor para todos os bancos de dados, com maior vantagem para os bancos de dados representado os piores cenários de atendimento. Os resultados confirmaram que é possível usar um algoritmo genético para ajustar o TRISS e que o algoritmo pode ter desempenho superior ao do método TRISS original. |
id |
USP_5e16e26cf88b2b35ed061b6e52e8e9e4 |
---|---|
oai_identifier_str |
oai:teses.usp.br:tde-11112021-150130 |
network_acronym_str |
USP |
network_name_str |
Biblioteca Digital de Teses e Dissertações da USP |
repository_id_str |
2721 |
spelling |
TRISS-AG: um algoritmo genético para ajuste do método TRISS de previsão de sobrevivência de pacientes de traumaTRISS-AG: a genetic algorithm to adjust the TRISS prediction method of trauma patients survivalAlgoritmos genéticosComputação evolutivaEvolutionary computationGenetic algorithmsÍndices de gravidade do traumaTrauma and Injury Severity ScoreTrauma and Injury Severity ScoreTrauma severity scoresTRISSTRISSO método TRISS é amplamente utilizado para previsão de sobrevivência de pacientes de trauma, tendo papel chave tanto para guiar decisões clínicas no momento do atendimento como posteriormente para avaliar o desempenho do serviço de saúde. Embora seja o mais usado no mundo todo, ele tem sido criticado por não refletir a realidade do atendimento médico de países em desenvolvimento, pois foi construído por meio de uma regressão logística usando dados de pacientes norte-americanos há mais de três décadas. Estudos tem sido feitos buscando adaptá-lo usando dados locais e técnicas alternativas, incluindo inteligência computacional. Propõe-se neste trabalho uma abordagem para ajustar o TRISS usando algoritmos genéticos, testando se é possível utilizar tal técnica e superar o desempenho do TRISS original quando aplicado a dados que representem tal realidade. Inicialmente foram sintetizados cinco bancos de dados simulando pacientes atendidos por hospitais de qualidade progressivamente inferior. O desempenho do TRISS em prever a sobrevivência destes pacientes foi medido utilizando curvas ROC, mostrandose progressivamente menor, confirmando que o TRISS apresenta problemas em realidades de atendimento piores. Foi, então, desenvolvido o TRISS-AG, um algoritmo genético para ajustar a equação do TRISS. O desempenho do TRISS-AG e do TRISS aplicados aos bancos de dados foi comparado com base na quantidade de acertos na previsão de sobrevivência e o TRISS-AG apresentou desempenho melhor para todos os bancos de dados, com maior vantagem para os bancos de dados representado os piores cenários de atendimento. Os resultados confirmaram que é possível usar um algoritmo genético para ajustar o TRISS e que o algoritmo pode ter desempenho superior ao do método TRISS original.The TRISS method is widely used to predict the survival of trauma patients, having a key role both in guiding clinical decisions at the time of care and later to assess the performance of the health service. Although it is the most used worldwide, it has been criticized for not reflecting the reality of medical care in developing countries, as it was built by means of a logistic regression using data from American patients more than three decades ago. Studies have been done seeking to adapt it using local data and alternative techniques, including computational intelligence. This work proposes an approach to adjust TRISS using genetic algorithms, testing whether it is possible to use such a technique and outperform of the original TRISS when applied to data that represent such a reality. Initially, five databases were synthetized simulating patients treated by hospitals of progressively lower quality. The performance of TRISS in predicting the survival of these patients was measured using ROC curves, showing to be progressively lower, confirming that TRISS presents problems in worse care realities. Then, TRISS-AG was developed, a genetic algorithm to adjust the TRISS equation. The performance of TRISS-AG and TRISS applied to the databases was compared based on the number of correct survival predictions and TRISS-AG performed better for all databases, with a greater advantage for the databases representing the worst service scenarios. The results confirmed that it is possible to use a genetic algorithm to adjust TRISS and that such algorithm can perform better than the original TRISS method.Biblioteca Digitais de Teses e Dissertações da USPCuminato, José AlbertoEnnes, André Terra2021-08-31info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttps://www.teses.usp.br/teses/disponiveis/55/55137/tde-11112021-150130/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesspor2021-11-11T17:09:02Zoai:teses.usp.br:tde-11112021-150130Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212021-11-11T17:09:02Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false |
dc.title.none.fl_str_mv |
TRISS-AG: um algoritmo genético para ajuste do método TRISS de previsão de sobrevivência de pacientes de trauma TRISS-AG: a genetic algorithm to adjust the TRISS prediction method of trauma patients survival |
title |
TRISS-AG: um algoritmo genético para ajuste do método TRISS de previsão de sobrevivência de pacientes de trauma |
spellingShingle |
TRISS-AG: um algoritmo genético para ajuste do método TRISS de previsão de sobrevivência de pacientes de trauma Ennes, André Terra Algoritmos genéticos Computação evolutiva Evolutionary computation Genetic algorithms Índices de gravidade do trauma Trauma and Injury Severity Score Trauma and Injury Severity Score Trauma severity scores TRISS TRISS |
title_short |
TRISS-AG: um algoritmo genético para ajuste do método TRISS de previsão de sobrevivência de pacientes de trauma |
title_full |
TRISS-AG: um algoritmo genético para ajuste do método TRISS de previsão de sobrevivência de pacientes de trauma |
title_fullStr |
TRISS-AG: um algoritmo genético para ajuste do método TRISS de previsão de sobrevivência de pacientes de trauma |
title_full_unstemmed |
TRISS-AG: um algoritmo genético para ajuste do método TRISS de previsão de sobrevivência de pacientes de trauma |
title_sort |
TRISS-AG: um algoritmo genético para ajuste do método TRISS de previsão de sobrevivência de pacientes de trauma |
author |
Ennes, André Terra |
author_facet |
Ennes, André Terra |
author_role |
author |
dc.contributor.none.fl_str_mv |
Cuminato, José Alberto |
dc.contributor.author.fl_str_mv |
Ennes, André Terra |
dc.subject.por.fl_str_mv |
Algoritmos genéticos Computação evolutiva Evolutionary computation Genetic algorithms Índices de gravidade do trauma Trauma and Injury Severity Score Trauma and Injury Severity Score Trauma severity scores TRISS TRISS |
topic |
Algoritmos genéticos Computação evolutiva Evolutionary computation Genetic algorithms Índices de gravidade do trauma Trauma and Injury Severity Score Trauma and Injury Severity Score Trauma severity scores TRISS TRISS |
description |
O método TRISS é amplamente utilizado para previsão de sobrevivência de pacientes de trauma, tendo papel chave tanto para guiar decisões clínicas no momento do atendimento como posteriormente para avaliar o desempenho do serviço de saúde. Embora seja o mais usado no mundo todo, ele tem sido criticado por não refletir a realidade do atendimento médico de países em desenvolvimento, pois foi construído por meio de uma regressão logística usando dados de pacientes norte-americanos há mais de três décadas. Estudos tem sido feitos buscando adaptá-lo usando dados locais e técnicas alternativas, incluindo inteligência computacional. Propõe-se neste trabalho uma abordagem para ajustar o TRISS usando algoritmos genéticos, testando se é possível utilizar tal técnica e superar o desempenho do TRISS original quando aplicado a dados que representem tal realidade. Inicialmente foram sintetizados cinco bancos de dados simulando pacientes atendidos por hospitais de qualidade progressivamente inferior. O desempenho do TRISS em prever a sobrevivência destes pacientes foi medido utilizando curvas ROC, mostrandose progressivamente menor, confirmando que o TRISS apresenta problemas em realidades de atendimento piores. Foi, então, desenvolvido o TRISS-AG, um algoritmo genético para ajustar a equação do TRISS. O desempenho do TRISS-AG e do TRISS aplicados aos bancos de dados foi comparado com base na quantidade de acertos na previsão de sobrevivência e o TRISS-AG apresentou desempenho melhor para todos os bancos de dados, com maior vantagem para os bancos de dados representado os piores cenários de atendimento. Os resultados confirmaram que é possível usar um algoritmo genético para ajustar o TRISS e que o algoritmo pode ter desempenho superior ao do método TRISS original. |
publishDate |
2021 |
dc.date.none.fl_str_mv |
2021-08-31 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://www.teses.usp.br/teses/disponiveis/55/55137/tde-11112021-150130/ |
url |
https://www.teses.usp.br/teses/disponiveis/55/55137/tde-11112021-150130/ |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.relation.none.fl_str_mv |
|
dc.rights.driver.fl_str_mv |
Liberar o conteúdo para acesso público. info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Liberar o conteúdo para acesso público. |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.coverage.none.fl_str_mv |
|
dc.publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações da USP instname:Universidade de São Paulo (USP) instacron:USP |
instname_str |
Universidade de São Paulo (USP) |
instacron_str |
USP |
institution |
USP |
reponame_str |
Biblioteca Digital de Teses e Dissertações da USP |
collection |
Biblioteca Digital de Teses e Dissertações da USP |
repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP) |
repository.mail.fl_str_mv |
virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br |
_version_ |
1815256879043969024 |