Microphysical Analysis and Modeling of Amazonic Deep Convection

Detalhes bibliográficos
Autor(a) principal: Basso, João Luiz Martins
Data de Publicação: 2018
Tipo de documento: Dissertação
Idioma: eng
Título da fonte: Biblioteca Digital de Teses e Dissertações da USP
Texto Completo: http://www.teses.usp.br/teses/disponiveis/14/14133/tde-13072019-154102/
Resumo: Atmospheric moist convection is one of the main topics discussed on weather and climate. This study purpose is to understand why different and similar cloud microphysics parameterizations produce different patterns of precipitation at the ground through several numerical sensitivity tests with the WRF model in the simulation of a squall line case observed on the Amazon region. Four different bulk microphysics parameterizations (Lin, WSM6, Morrison, and Milbrandt) were tested, and the main results show that statistical errors do not change significantly among each other for the four numerical domains (from 27 km up to 1 km grids). The correlations between radar rainfall data and the simulated precipitation fields show the double-moment parameterization Morrison scheme was the one that displayed better results in the overall: While Morrison scheme show 0.6 correlation in the western box of the 1 km domain, WSM6 and Lin schemes show 0.39 and 0.05, respectively. Nevertheless, because this scheme presents good correlations with the radar rain rates, it also shows a fairly better system lifecycle, evolution, and propagation when compared to the satellite data. Although, the complexity that the way microphysics variables are treated in both one-moment and double-moment schemes in this case study do not highly affect the simulatios results, the tridimensional vertical cross-sections show that the Purdue Lin and Morrison schemes display more intense systems compared to WSM6 and Milbrandt schemes, which may be associated with the different treatments of the ice-phase microphysics. In the specific comparison between double-moment schemes, the ice quantities generated by both Morrison and Milbrandt schemes highly affected thesystem displacement and rainfall intensity. This also affects the vertical velocities intensity which, in its, turn, changes the size of the cold pools. Differences in ice quantities were responsible for distinct quantities of total precipitable water content, which is related with the verticallly integrated ice mixing ratio generated by Morrison. The system moves faster in Milbrandt scheme compared to Morrison because the scheme generated more graupel quantities, which is smaller in size than hail, and it evaporates easier in the processes inside the cloud due to its size. This fact also changed the more intense cold pools intensity for Milbrandt scheme compared to Morrison.
id USP_5f13dd682f6d364336b874b5de9c3c1b
oai_identifier_str oai:teses.usp.br:tde-13072019-154102
network_acronym_str USP
network_name_str Biblioteca Digital de Teses e Dissertações da USP
repository_id_str 2721
spelling Microphysical Analysis and Modeling of Amazonic Deep ConvectionAnálise e Modelagem Microfísica da Convecção Profunda Amazônicacloud microphysicsConvecçãoConvectionMicrofísica de NuvensparameterizationParametrizaçãoprecipitação.precipitation.Atmospheric moist convection is one of the main topics discussed on weather and climate. This study purpose is to understand why different and similar cloud microphysics parameterizations produce different patterns of precipitation at the ground through several numerical sensitivity tests with the WRF model in the simulation of a squall line case observed on the Amazon region. Four different bulk microphysics parameterizations (Lin, WSM6, Morrison, and Milbrandt) were tested, and the main results show that statistical errors do not change significantly among each other for the four numerical domains (from 27 km up to 1 km grids). The correlations between radar rainfall data and the simulated precipitation fields show the double-moment parameterization Morrison scheme was the one that displayed better results in the overall: While Morrison scheme show 0.6 correlation in the western box of the 1 km domain, WSM6 and Lin schemes show 0.39 and 0.05, respectively. Nevertheless, because this scheme presents good correlations with the radar rain rates, it also shows a fairly better system lifecycle, evolution, and propagation when compared to the satellite data. Although, the complexity that the way microphysics variables are treated in both one-moment and double-moment schemes in this case study do not highly affect the simulatios results, the tridimensional vertical cross-sections show that the Purdue Lin and Morrison schemes display more intense systems compared to WSM6 and Milbrandt schemes, which may be associated with the different treatments of the ice-phase microphysics. In the specific comparison between double-moment schemes, the ice quantities generated by both Morrison and Milbrandt schemes highly affected thesystem displacement and rainfall intensity. This also affects the vertical velocities intensity which, in its, turn, changes the size of the cold pools. Differences in ice quantities were responsible for distinct quantities of total precipitable water content, which is related with the verticallly integrated ice mixing ratio generated by Morrison. The system moves faster in Milbrandt scheme compared to Morrison because the scheme generated more graupel quantities, which is smaller in size than hail, and it evaporates easier in the processes inside the cloud due to its size. This fact also changed the more intense cold pools intensity for Milbrandt scheme compared to Morrison.A convecção atmosférica é um dos principais tópicos discutidos no tempo e clima. O objetivo deste estudo é entender por que diferentes e semelhantes parametrizações de microfísica de nuvens produzem diferentes padrões de precipitação no solo através de vários testes numéricos de sensibilidade com o modelo WRF na simulação de um caso de linha de instabilidade observado na região amazônica. Quatro diferentes parametrizações microfísicas de tipo bulk (Lin, WSM6, Morrison e Milbrandt) foram testadas, e os principais resultados mostram que os erros estatísticos não se alteram significativamente entre si para os quatro domínios numéricos (da grade de 27 km até a de 1 km). As correlações entre dados pluviométricos de radar e os campos de precipitação simulados mostram que o esquema Morrison de parametrização de duplo momento foi o que apresentou melhores resultados, no geral: enquanto o esquema de Morrison mostra correlação 0,6 na caixa oeste do domínio de 1 km, os esquemas WSM6 e Lin mostram 0,39 e 0,05, respectivamente. No entanto, como esse esquema apresenta boas correlações com as taxas de chuva do radar, ele também mostra um ciclo de vida, evolução e propagação do sistema relativamente melhores quando comparado aos dados de satélite. Embora a complexidade com que as variáveis microfísicas são tratadas nos esquemas de um momento e de duplo momento neste estudo de caso não afetam muito os resultados simulados, as seções transversais verticais tridimensionais mostram que os esquemas de Purdue Lin e Morrison exibem mais intensos em comparação com os esquemas WSM6 e Milbrandt, que podem estar associados aos diferentes tratamentos da microfísica da fase de gelo. Na comparação específica entre esquemas de momento duplo, as quantidades de gelo geradas pelos esquemas de Morrison e Milbrandt afetaram muito o deslocamento do sistema e a intensidade da chuva. Isso também afeta a intensidade das velocidades verticais que, por sua vez, altera o tamanho das piscinas frias. As diferençaas nas quantidades de gelo foram responsáveis por quantidades distintas de conteúdo total de água, que está relacionado com a razão de mistura de gelo verticalmente integrada gerada por Morrison. O sistema se move mais rápido no esquema de Milbrandt comparado a Morrison porque o esquema gerou mais quantidades de graupel, que é menor em tamanho do que o granizo, e evapora mais facilmente nos processos dentro da nuvem devido ao seu tamanho. Este fato também mudou a intensidade das piscinas frias mais intensas, porém menores em extensão horizontal, para o esquema Milbrandt em comparação com Morrison.Biblioteca Digitais de Teses e Dissertações da USPHallak, RicardoBasso, João Luiz Martins2018-07-16info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://www.teses.usp.br/teses/disponiveis/14/14133/tde-13072019-154102/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesseng2019-11-08T22:01:26Zoai:teses.usp.br:tde-13072019-154102Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212019-11-08T22:01:26Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false
dc.title.none.fl_str_mv Microphysical Analysis and Modeling of Amazonic Deep Convection
Análise e Modelagem Microfísica da Convecção Profunda Amazônica
title Microphysical Analysis and Modeling of Amazonic Deep Convection
spellingShingle Microphysical Analysis and Modeling of Amazonic Deep Convection
Basso, João Luiz Martins
cloud microphysics
Convecção
Convection
Microfísica de Nuvens
parameterization
Parametrização
precipitação.
precipitation.
title_short Microphysical Analysis and Modeling of Amazonic Deep Convection
title_full Microphysical Analysis and Modeling of Amazonic Deep Convection
title_fullStr Microphysical Analysis and Modeling of Amazonic Deep Convection
title_full_unstemmed Microphysical Analysis and Modeling of Amazonic Deep Convection
title_sort Microphysical Analysis and Modeling of Amazonic Deep Convection
author Basso, João Luiz Martins
author_facet Basso, João Luiz Martins
author_role author
dc.contributor.none.fl_str_mv Hallak, Ricardo
dc.contributor.author.fl_str_mv Basso, João Luiz Martins
dc.subject.por.fl_str_mv cloud microphysics
Convecção
Convection
Microfísica de Nuvens
parameterization
Parametrização
precipitação.
precipitation.
topic cloud microphysics
Convecção
Convection
Microfísica de Nuvens
parameterization
Parametrização
precipitação.
precipitation.
description Atmospheric moist convection is one of the main topics discussed on weather and climate. This study purpose is to understand why different and similar cloud microphysics parameterizations produce different patterns of precipitation at the ground through several numerical sensitivity tests with the WRF model in the simulation of a squall line case observed on the Amazon region. Four different bulk microphysics parameterizations (Lin, WSM6, Morrison, and Milbrandt) were tested, and the main results show that statistical errors do not change significantly among each other for the four numerical domains (from 27 km up to 1 km grids). The correlations between radar rainfall data and the simulated precipitation fields show the double-moment parameterization Morrison scheme was the one that displayed better results in the overall: While Morrison scheme show 0.6 correlation in the western box of the 1 km domain, WSM6 and Lin schemes show 0.39 and 0.05, respectively. Nevertheless, because this scheme presents good correlations with the radar rain rates, it also shows a fairly better system lifecycle, evolution, and propagation when compared to the satellite data. Although, the complexity that the way microphysics variables are treated in both one-moment and double-moment schemes in this case study do not highly affect the simulatios results, the tridimensional vertical cross-sections show that the Purdue Lin and Morrison schemes display more intense systems compared to WSM6 and Milbrandt schemes, which may be associated with the different treatments of the ice-phase microphysics. In the specific comparison between double-moment schemes, the ice quantities generated by both Morrison and Milbrandt schemes highly affected thesystem displacement and rainfall intensity. This also affects the vertical velocities intensity which, in its, turn, changes the size of the cold pools. Differences in ice quantities were responsible for distinct quantities of total precipitable water content, which is related with the verticallly integrated ice mixing ratio generated by Morrison. The system moves faster in Milbrandt scheme compared to Morrison because the scheme generated more graupel quantities, which is smaller in size than hail, and it evaporates easier in the processes inside the cloud due to its size. This fact also changed the more intense cold pools intensity for Milbrandt scheme compared to Morrison.
publishDate 2018
dc.date.none.fl_str_mv 2018-07-16
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://www.teses.usp.br/teses/disponiveis/14/14133/tde-13072019-154102/
url http://www.teses.usp.br/teses/disponiveis/14/14133/tde-13072019-154102/
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv
dc.rights.driver.fl_str_mv Liberar o conteúdo para acesso público.
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Liberar o conteúdo para acesso público.
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.coverage.none.fl_str_mv
dc.publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
dc.source.none.fl_str_mv
reponame:Biblioteca Digital de Teses e Dissertações da USP
instname:Universidade de São Paulo (USP)
instacron:USP
instname_str Universidade de São Paulo (USP)
instacron_str USP
institution USP
reponame_str Biblioteca Digital de Teses e Dissertações da USP
collection Biblioteca Digital de Teses e Dissertações da USP
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)
repository.mail.fl_str_mv virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br
_version_ 1815256939394760704