Microphysical Analysis and Modeling of Amazonic Deep Convection
Autor(a) principal: | |
---|---|
Data de Publicação: | 2018 |
Tipo de documento: | Dissertação |
Idioma: | eng |
Título da fonte: | Biblioteca Digital de Teses e Dissertações da USP |
Texto Completo: | http://www.teses.usp.br/teses/disponiveis/14/14133/tde-13072019-154102/ |
Resumo: | Atmospheric moist convection is one of the main topics discussed on weather and climate. This study purpose is to understand why different and similar cloud microphysics parameterizations produce different patterns of precipitation at the ground through several numerical sensitivity tests with the WRF model in the simulation of a squall line case observed on the Amazon region. Four different bulk microphysics parameterizations (Lin, WSM6, Morrison, and Milbrandt) were tested, and the main results show that statistical errors do not change significantly among each other for the four numerical domains (from 27 km up to 1 km grids). The correlations between radar rainfall data and the simulated precipitation fields show the double-moment parameterization Morrison scheme was the one that displayed better results in the overall: While Morrison scheme show 0.6 correlation in the western box of the 1 km domain, WSM6 and Lin schemes show 0.39 and 0.05, respectively. Nevertheless, because this scheme presents good correlations with the radar rain rates, it also shows a fairly better system lifecycle, evolution, and propagation when compared to the satellite data. Although, the complexity that the way microphysics variables are treated in both one-moment and double-moment schemes in this case study do not highly affect the simulatios results, the tridimensional vertical cross-sections show that the Purdue Lin and Morrison schemes display more intense systems compared to WSM6 and Milbrandt schemes, which may be associated with the different treatments of the ice-phase microphysics. In the specific comparison between double-moment schemes, the ice quantities generated by both Morrison and Milbrandt schemes highly affected thesystem displacement and rainfall intensity. This also affects the vertical velocities intensity which, in its, turn, changes the size of the cold pools. Differences in ice quantities were responsible for distinct quantities of total precipitable water content, which is related with the verticallly integrated ice mixing ratio generated by Morrison. The system moves faster in Milbrandt scheme compared to Morrison because the scheme generated more graupel quantities, which is smaller in size than hail, and it evaporates easier in the processes inside the cloud due to its size. This fact also changed the more intense cold pools intensity for Milbrandt scheme compared to Morrison. |
id |
USP_5f13dd682f6d364336b874b5de9c3c1b |
---|---|
oai_identifier_str |
oai:teses.usp.br:tde-13072019-154102 |
network_acronym_str |
USP |
network_name_str |
Biblioteca Digital de Teses e Dissertações da USP |
repository_id_str |
2721 |
spelling |
Microphysical Analysis and Modeling of Amazonic Deep ConvectionAnálise e Modelagem Microfísica da Convecção Profunda Amazônicacloud microphysicsConvecçãoConvectionMicrofísica de NuvensparameterizationParametrizaçãoprecipitação.precipitation.Atmospheric moist convection is one of the main topics discussed on weather and climate. This study purpose is to understand why different and similar cloud microphysics parameterizations produce different patterns of precipitation at the ground through several numerical sensitivity tests with the WRF model in the simulation of a squall line case observed on the Amazon region. Four different bulk microphysics parameterizations (Lin, WSM6, Morrison, and Milbrandt) were tested, and the main results show that statistical errors do not change significantly among each other for the four numerical domains (from 27 km up to 1 km grids). The correlations between radar rainfall data and the simulated precipitation fields show the double-moment parameterization Morrison scheme was the one that displayed better results in the overall: While Morrison scheme show 0.6 correlation in the western box of the 1 km domain, WSM6 and Lin schemes show 0.39 and 0.05, respectively. Nevertheless, because this scheme presents good correlations with the radar rain rates, it also shows a fairly better system lifecycle, evolution, and propagation when compared to the satellite data. Although, the complexity that the way microphysics variables are treated in both one-moment and double-moment schemes in this case study do not highly affect the simulatios results, the tridimensional vertical cross-sections show that the Purdue Lin and Morrison schemes display more intense systems compared to WSM6 and Milbrandt schemes, which may be associated with the different treatments of the ice-phase microphysics. In the specific comparison between double-moment schemes, the ice quantities generated by both Morrison and Milbrandt schemes highly affected thesystem displacement and rainfall intensity. This also affects the vertical velocities intensity which, in its, turn, changes the size of the cold pools. Differences in ice quantities were responsible for distinct quantities of total precipitable water content, which is related with the verticallly integrated ice mixing ratio generated by Morrison. The system moves faster in Milbrandt scheme compared to Morrison because the scheme generated more graupel quantities, which is smaller in size than hail, and it evaporates easier in the processes inside the cloud due to its size. This fact also changed the more intense cold pools intensity for Milbrandt scheme compared to Morrison.A convecção atmosférica é um dos principais tópicos discutidos no tempo e clima. O objetivo deste estudo é entender por que diferentes e semelhantes parametrizações de microfísica de nuvens produzem diferentes padrões de precipitação no solo através de vários testes numéricos de sensibilidade com o modelo WRF na simulação de um caso de linha de instabilidade observado na região amazônica. Quatro diferentes parametrizações microfísicas de tipo bulk (Lin, WSM6, Morrison e Milbrandt) foram testadas, e os principais resultados mostram que os erros estatísticos não se alteram significativamente entre si para os quatro domínios numéricos (da grade de 27 km até a de 1 km). As correlações entre dados pluviométricos de radar e os campos de precipitação simulados mostram que o esquema Morrison de parametrização de duplo momento foi o que apresentou melhores resultados, no geral: enquanto o esquema de Morrison mostra correlação 0,6 na caixa oeste do domínio de 1 km, os esquemas WSM6 e Lin mostram 0,39 e 0,05, respectivamente. No entanto, como esse esquema apresenta boas correlações com as taxas de chuva do radar, ele também mostra um ciclo de vida, evolução e propagação do sistema relativamente melhores quando comparado aos dados de satélite. Embora a complexidade com que as variáveis microfísicas são tratadas nos esquemas de um momento e de duplo momento neste estudo de caso não afetam muito os resultados simulados, as seções transversais verticais tridimensionais mostram que os esquemas de Purdue Lin e Morrison exibem mais intensos em comparação com os esquemas WSM6 e Milbrandt, que podem estar associados aos diferentes tratamentos da microfísica da fase de gelo. Na comparação específica entre esquemas de momento duplo, as quantidades de gelo geradas pelos esquemas de Morrison e Milbrandt afetaram muito o deslocamento do sistema e a intensidade da chuva. Isso também afeta a intensidade das velocidades verticais que, por sua vez, altera o tamanho das piscinas frias. As diferençaas nas quantidades de gelo foram responsáveis por quantidades distintas de conteúdo total de água, que está relacionado com a razão de mistura de gelo verticalmente integrada gerada por Morrison. O sistema se move mais rápido no esquema de Milbrandt comparado a Morrison porque o esquema gerou mais quantidades de graupel, que é menor em tamanho do que o granizo, e evapora mais facilmente nos processos dentro da nuvem devido ao seu tamanho. Este fato também mudou a intensidade das piscinas frias mais intensas, porém menores em extensão horizontal, para o esquema Milbrandt em comparação com Morrison.Biblioteca Digitais de Teses e Dissertações da USPHallak, RicardoBasso, João Luiz Martins2018-07-16info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://www.teses.usp.br/teses/disponiveis/14/14133/tde-13072019-154102/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesseng2019-11-08T22:01:26Zoai:teses.usp.br:tde-13072019-154102Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212019-11-08T22:01:26Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false |
dc.title.none.fl_str_mv |
Microphysical Analysis and Modeling of Amazonic Deep Convection Análise e Modelagem Microfísica da Convecção Profunda Amazônica |
title |
Microphysical Analysis and Modeling of Amazonic Deep Convection |
spellingShingle |
Microphysical Analysis and Modeling of Amazonic Deep Convection Basso, João Luiz Martins cloud microphysics Convecção Convection Microfísica de Nuvens parameterization Parametrização precipitação. precipitation. |
title_short |
Microphysical Analysis and Modeling of Amazonic Deep Convection |
title_full |
Microphysical Analysis and Modeling of Amazonic Deep Convection |
title_fullStr |
Microphysical Analysis and Modeling of Amazonic Deep Convection |
title_full_unstemmed |
Microphysical Analysis and Modeling of Amazonic Deep Convection |
title_sort |
Microphysical Analysis and Modeling of Amazonic Deep Convection |
author |
Basso, João Luiz Martins |
author_facet |
Basso, João Luiz Martins |
author_role |
author |
dc.contributor.none.fl_str_mv |
Hallak, Ricardo |
dc.contributor.author.fl_str_mv |
Basso, João Luiz Martins |
dc.subject.por.fl_str_mv |
cloud microphysics Convecção Convection Microfísica de Nuvens parameterization Parametrização precipitação. precipitation. |
topic |
cloud microphysics Convecção Convection Microfísica de Nuvens parameterization Parametrização precipitação. precipitation. |
description |
Atmospheric moist convection is one of the main topics discussed on weather and climate. This study purpose is to understand why different and similar cloud microphysics parameterizations produce different patterns of precipitation at the ground through several numerical sensitivity tests with the WRF model in the simulation of a squall line case observed on the Amazon region. Four different bulk microphysics parameterizations (Lin, WSM6, Morrison, and Milbrandt) were tested, and the main results show that statistical errors do not change significantly among each other for the four numerical domains (from 27 km up to 1 km grids). The correlations between radar rainfall data and the simulated precipitation fields show the double-moment parameterization Morrison scheme was the one that displayed better results in the overall: While Morrison scheme show 0.6 correlation in the western box of the 1 km domain, WSM6 and Lin schemes show 0.39 and 0.05, respectively. Nevertheless, because this scheme presents good correlations with the radar rain rates, it also shows a fairly better system lifecycle, evolution, and propagation when compared to the satellite data. Although, the complexity that the way microphysics variables are treated in both one-moment and double-moment schemes in this case study do not highly affect the simulatios results, the tridimensional vertical cross-sections show that the Purdue Lin and Morrison schemes display more intense systems compared to WSM6 and Milbrandt schemes, which may be associated with the different treatments of the ice-phase microphysics. In the specific comparison between double-moment schemes, the ice quantities generated by both Morrison and Milbrandt schemes highly affected thesystem displacement and rainfall intensity. This also affects the vertical velocities intensity which, in its, turn, changes the size of the cold pools. Differences in ice quantities were responsible for distinct quantities of total precipitable water content, which is related with the verticallly integrated ice mixing ratio generated by Morrison. The system moves faster in Milbrandt scheme compared to Morrison because the scheme generated more graupel quantities, which is smaller in size than hail, and it evaporates easier in the processes inside the cloud due to its size. This fact also changed the more intense cold pools intensity for Milbrandt scheme compared to Morrison. |
publishDate |
2018 |
dc.date.none.fl_str_mv |
2018-07-16 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://www.teses.usp.br/teses/disponiveis/14/14133/tde-13072019-154102/ |
url |
http://www.teses.usp.br/teses/disponiveis/14/14133/tde-13072019-154102/ |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
|
dc.rights.driver.fl_str_mv |
Liberar o conteúdo para acesso público. info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Liberar o conteúdo para acesso público. |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.coverage.none.fl_str_mv |
|
dc.publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações da USP instname:Universidade de São Paulo (USP) instacron:USP |
instname_str |
Universidade de São Paulo (USP) |
instacron_str |
USP |
institution |
USP |
reponame_str |
Biblioteca Digital de Teses e Dissertações da USP |
collection |
Biblioteca Digital de Teses e Dissertações da USP |
repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP) |
repository.mail.fl_str_mv |
virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br |
_version_ |
1815256939394760704 |