Computational study in fluid mechanics of bio-inspired geometries: constricted channel and paediatric ventricular assist device.
Autor(a) principal: | |
---|---|
Data de Publicação: | 2018 |
Tipo de documento: | Tese |
Idioma: | eng |
Título da fonte: | Biblioteca Digital de Teses e Dissertações da USP |
Texto Completo: | http://www.teses.usp.br/teses/disponiveis/3/3150/tde-18072018-140712/ |
Resumo: | Numerical modelling and simulation are powerful tools for analysis and design, and with the improvement of computational power and numerical methods they are being applied on complex phenomena and systems. This work shows examples of the application of a very sophisticated numerical method, namely the Spectral/hp element method, in the study of the flow inside bioinspired complex geometries. The two topics investigated are fluid dynamic instabilities in a constricted channel and flow inside a paediatric ventricular assist device were studied by means of computational fluid mechanics. The constricted channel is an idealized model of a nasal cavity, which is characterized by complex airway channels, and also bears some resemblance to a human artery in the presence of an atherosclerotic plaques. The paediatric ventricular assist device is an actual device, designed by the Bioengineering research group of the Heart Institute of the Medicine School of the University of São Paulo, which works as a pump that assists the left ventricle of patients waiting for transplantation. Therefore, the aim of this thesis is to contribute in the understanding of biological and bio-inspired geometries flows, using computational tools. Linear and nonlinear stability were carried out for the constricted channel. Three different flow regimes were investigated: symmetric steady flow, which is stable for low Reynolds number, asymmetric steady flow, which rises as a result of the primary bifurcation of the symmetric flow and pulsatile flow. Direct stability analysis was carried out to determine the unstable regions and the critical values for each flow regime. The physical mechanisms behind the transition processes were studied by means of direct numerical simulations to characterize the bifurcations. Since the bifurcations had subcritical behaviour, the relevance of non-normal growth in these flows was assessed. Dependence on phase, Reynolds number and spanwise wavenumber of optimal modes were extensively investigated in stable regions of the three flow regimes. Convective instabilities were also studied in order to comprehend the physical mechanisms which led the optimal modes to their maxima growth, and different convective mechanisms were found. The flow inside the paediatric ventricular assist device was analyzed by means of threedimensional numerical simulations. A computational model based on special boundaries conditions was developed to model the pulsatile flow. In this model, the opening and closure of the mitral valve and diaphragm were represented with the use of specially devised boundary conditions. The driving force and the flow direction of the diaphragm were defined by velocity distribution on the diaphragm wall, and the opening and closure of the mitral valve were performed by a velocity waveform which goes to zero in the systolic period. Flow patterns, velocity fields and time-average wall shear rate were analyzed to evaluate the performance of the device. |
id |
USP_602f07a1a59675ad7619cd6174d3ed7a |
---|---|
oai_identifier_str |
oai:teses.usp.br:tde-18072018-140712 |
network_acronym_str |
USP |
network_name_str |
Biblioteca Digital de Teses e Dissertações da USP |
repository_id_str |
2721 |
spelling |
Computational study in fluid mechanics of bio-inspired geometries: constricted channel and paediatric ventricular assist device.Estudo computacional em mecânica de fluidos de geometrias bio-inspiradas: canal constrito e dispositivo de assistência ventricular pediátrico.BifurcationBioengenhariaChannel flowDispositivos e instrumentos médicosEscoamentoInstabilityMecânica dos fluídosPaediatric ventricular assist deviceVentrículo cardíacoNumerical modelling and simulation are powerful tools for analysis and design, and with the improvement of computational power and numerical methods they are being applied on complex phenomena and systems. This work shows examples of the application of a very sophisticated numerical method, namely the Spectral/hp element method, in the study of the flow inside bioinspired complex geometries. The two topics investigated are fluid dynamic instabilities in a constricted channel and flow inside a paediatric ventricular assist device were studied by means of computational fluid mechanics. The constricted channel is an idealized model of a nasal cavity, which is characterized by complex airway channels, and also bears some resemblance to a human artery in the presence of an atherosclerotic plaques. The paediatric ventricular assist device is an actual device, designed by the Bioengineering research group of the Heart Institute of the Medicine School of the University of São Paulo, which works as a pump that assists the left ventricle of patients waiting for transplantation. Therefore, the aim of this thesis is to contribute in the understanding of biological and bio-inspired geometries flows, using computational tools. Linear and nonlinear stability were carried out for the constricted channel. Three different flow regimes were investigated: symmetric steady flow, which is stable for low Reynolds number, asymmetric steady flow, which rises as a result of the primary bifurcation of the symmetric flow and pulsatile flow. Direct stability analysis was carried out to determine the unstable regions and the critical values for each flow regime. The physical mechanisms behind the transition processes were studied by means of direct numerical simulations to characterize the bifurcations. Since the bifurcations had subcritical behaviour, the relevance of non-normal growth in these flows was assessed. Dependence on phase, Reynolds number and spanwise wavenumber of optimal modes were extensively investigated in stable regions of the three flow regimes. Convective instabilities were also studied in order to comprehend the physical mechanisms which led the optimal modes to their maxima growth, and different convective mechanisms were found. The flow inside the paediatric ventricular assist device was analyzed by means of threedimensional numerical simulations. A computational model based on special boundaries conditions was developed to model the pulsatile flow. In this model, the opening and closure of the mitral valve and diaphragm were represented with the use of specially devised boundary conditions. The driving force and the flow direction of the diaphragm were defined by velocity distribution on the diaphragm wall, and the opening and closure of the mitral valve were performed by a velocity waveform which goes to zero in the systolic period. Flow patterns, velocity fields and time-average wall shear rate were analyzed to evaluate the performance of the device.Modelagem e simulação numéricas são ferramentas poderosas para análise e design, e com a melhoria do poder computacional e dos métodos numéricos, eles estão sendo aplicados em fenômenos e sistemas complexos. Este trabalho mostra exemplos de aplicações de um método numérico sofisticado, o método dos elementos espectrais/hp, no estudo do escoamento dentro de geometrias complexas bio-inspiradas. Os dois tópicos investigados são: instabilidades em dinâmica de fluido em um canal constrito e o escoamento dentro de um dispositivo de assistência ventricular pediátrica. O canal constrito é um modelo idealizado de uma cavidade nasal, que é caracterizada por canais complexos da via aérea, e também tem semelhança com uma artéria humana na presença de placas ateroscleróticas. O dispositivo de assistência ventricular pediátrica é um dispositivo real, projetado pelo grupo de pesquisa de Bioengenharia do Instituto do Coração da Faculdade de Medicina da Universidade de São Paulo, que funciona como uma bomba que auxilia o ventrículo esquerdo dos pacientes à espera de transplante. Portanto, o objetivo desta tese é contribuir na compreensão de escoamentos em geometrias biológicas e bio-inspiradas, usando ferramentas computacionais. Análises de estabilidade linear e não linear foram feitas para um canal constrito. Três diferentes regimes de escoamento foram empregados: escoamento estacionário simétrico, que é estável para baixo número de Reynolds, escoamento assimétrico, o qual é resultado da primeira bifurcação do escoamento simétrico e escoamento pulsátil. Análise de estabilidade direta foi executada para determinar as regiões instáveis em cada regime de escoamento. Os mecanismos físicos por trás do processo de transição foram estudados por meio de simulação numérica direta para caracterizar as bifurcações. Uma vez que, as bifurcações tiveram um comportamento subcrítico, a relevância do crescimento não normal nestes escoamentos foi avaliado. Assim, dependência com a fase, número de Reynolds e número de onda do modo tridimensional foram extensivamente investigados em regiões estáveis para os três regimes de escoamento. Instabilidades convectivas foram também estudadas a fim de compreender os mecanismos físicos que conduzem os modos ótimos para seus crescimentos máximos, e diferentes mecanismos convectivos foram encontrados. O escoamento dentro do dispositivo de assistência ventricular pediátrico foi analisado por meios de simulações numéricas tridimensionais. Um modelo computacional baseado em condições de contorno especiais foi desenvolvido para modelar o escoamento pulsátil. Neste modelo, a abertura e fechamento da válvula mitral e diafragma foram representados com o uso de condições de contorno especialmente elaboradas. A força motora e o direcionamento do fluxo do diafragma foram definidos por uma distribuição de velocidades na parede do diafragma, e a abertura e fechamento da válvula mitral foram executadas por uma função de onda de velocidade que vai a zero no período sistólico. Padrões do escoamento, campos de velocidade e tensão de cisalhamento no tempo foram analisadas para avaliar o desempenho do dispositivo.Biblioteca Digitais de Teses e Dissertações da USPCarmo, Bruno SouzaIsler, João Anderson2018-04-17info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfhttp://www.teses.usp.br/teses/disponiveis/3/3150/tde-18072018-140712/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesseng2024-10-09T13:03:42Zoai:teses.usp.br:tde-18072018-140712Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212024-10-09T13:03:42Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false |
dc.title.none.fl_str_mv |
Computational study in fluid mechanics of bio-inspired geometries: constricted channel and paediatric ventricular assist device. Estudo computacional em mecânica de fluidos de geometrias bio-inspiradas: canal constrito e dispositivo de assistência ventricular pediátrico. |
title |
Computational study in fluid mechanics of bio-inspired geometries: constricted channel and paediatric ventricular assist device. |
spellingShingle |
Computational study in fluid mechanics of bio-inspired geometries: constricted channel and paediatric ventricular assist device. Isler, João Anderson Bifurcation Bioengenharia Channel flow Dispositivos e instrumentos médicos Escoamento Instability Mecânica dos fluídos Paediatric ventricular assist device Ventrículo cardíaco |
title_short |
Computational study in fluid mechanics of bio-inspired geometries: constricted channel and paediatric ventricular assist device. |
title_full |
Computational study in fluid mechanics of bio-inspired geometries: constricted channel and paediatric ventricular assist device. |
title_fullStr |
Computational study in fluid mechanics of bio-inspired geometries: constricted channel and paediatric ventricular assist device. |
title_full_unstemmed |
Computational study in fluid mechanics of bio-inspired geometries: constricted channel and paediatric ventricular assist device. |
title_sort |
Computational study in fluid mechanics of bio-inspired geometries: constricted channel and paediatric ventricular assist device. |
author |
Isler, João Anderson |
author_facet |
Isler, João Anderson |
author_role |
author |
dc.contributor.none.fl_str_mv |
Carmo, Bruno Souza |
dc.contributor.author.fl_str_mv |
Isler, João Anderson |
dc.subject.por.fl_str_mv |
Bifurcation Bioengenharia Channel flow Dispositivos e instrumentos médicos Escoamento Instability Mecânica dos fluídos Paediatric ventricular assist device Ventrículo cardíaco |
topic |
Bifurcation Bioengenharia Channel flow Dispositivos e instrumentos médicos Escoamento Instability Mecânica dos fluídos Paediatric ventricular assist device Ventrículo cardíaco |
description |
Numerical modelling and simulation are powerful tools for analysis and design, and with the improvement of computational power and numerical methods they are being applied on complex phenomena and systems. This work shows examples of the application of a very sophisticated numerical method, namely the Spectral/hp element method, in the study of the flow inside bioinspired complex geometries. The two topics investigated are fluid dynamic instabilities in a constricted channel and flow inside a paediatric ventricular assist device were studied by means of computational fluid mechanics. The constricted channel is an idealized model of a nasal cavity, which is characterized by complex airway channels, and also bears some resemblance to a human artery in the presence of an atherosclerotic plaques. The paediatric ventricular assist device is an actual device, designed by the Bioengineering research group of the Heart Institute of the Medicine School of the University of São Paulo, which works as a pump that assists the left ventricle of patients waiting for transplantation. Therefore, the aim of this thesis is to contribute in the understanding of biological and bio-inspired geometries flows, using computational tools. Linear and nonlinear stability were carried out for the constricted channel. Three different flow regimes were investigated: symmetric steady flow, which is stable for low Reynolds number, asymmetric steady flow, which rises as a result of the primary bifurcation of the symmetric flow and pulsatile flow. Direct stability analysis was carried out to determine the unstable regions and the critical values for each flow regime. The physical mechanisms behind the transition processes were studied by means of direct numerical simulations to characterize the bifurcations. Since the bifurcations had subcritical behaviour, the relevance of non-normal growth in these flows was assessed. Dependence on phase, Reynolds number and spanwise wavenumber of optimal modes were extensively investigated in stable regions of the three flow regimes. Convective instabilities were also studied in order to comprehend the physical mechanisms which led the optimal modes to their maxima growth, and different convective mechanisms were found. The flow inside the paediatric ventricular assist device was analyzed by means of threedimensional numerical simulations. A computational model based on special boundaries conditions was developed to model the pulsatile flow. In this model, the opening and closure of the mitral valve and diaphragm were represented with the use of specially devised boundary conditions. The driving force and the flow direction of the diaphragm were defined by velocity distribution on the diaphragm wall, and the opening and closure of the mitral valve were performed by a velocity waveform which goes to zero in the systolic period. Flow patterns, velocity fields and time-average wall shear rate were analyzed to evaluate the performance of the device. |
publishDate |
2018 |
dc.date.none.fl_str_mv |
2018-04-17 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
format |
doctoralThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://www.teses.usp.br/teses/disponiveis/3/3150/tde-18072018-140712/ |
url |
http://www.teses.usp.br/teses/disponiveis/3/3150/tde-18072018-140712/ |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
|
dc.rights.driver.fl_str_mv |
Liberar o conteúdo para acesso público. info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Liberar o conteúdo para acesso público. |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.coverage.none.fl_str_mv |
|
dc.publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações da USP instname:Universidade de São Paulo (USP) instacron:USP |
instname_str |
Universidade de São Paulo (USP) |
instacron_str |
USP |
institution |
USP |
reponame_str |
Biblioteca Digital de Teses e Dissertações da USP |
collection |
Biblioteca Digital de Teses e Dissertações da USP |
repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP) |
repository.mail.fl_str_mv |
virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br |
_version_ |
1815256517224431616 |