Explorando conceitos da teoria de espaços métricos em consultas por similaridade sobre dados complexos
Autor(a) principal: | |
---|---|
Data de Publicação: | 2010 |
Tipo de documento: | Tese |
Idioma: | por |
Título da fonte: | Biblioteca Digital de Teses e Dissertações da USP |
Texto Completo: | http://www.teses.usp.br/teses/disponiveis/55/55134/tde-22092010-144202/ |
Resumo: | Estruturas de indexação para domínios métricos são úteis para agilizar consultas por similaridade sobre dados complexos, tais como imagens, onde o custo computacional da comparação de dois itens de dados geralmente é alto. O estado da arte para executar consultas por similaridade está centrado na utilização dos chamados \"Métodos de Acesso Métrico\" (MAM). Tais métodos consideram os dados como elementos de um espaço métrico, onde apenas valem as propriedades fundamentais para que um espaço seja considerado métrico, onde a única informação que os MAMs utilizam é a medida de similaridade entre pares de elementos do domínio. No campo teórico, espaços métricos são extensamente estudados e servem de base para diversas áreas da Matemática. No entanto, a maioria dos trabalhos que têm sido desenvolvidos em Computação se restringem a utilizar as definições básicas desses espaços, e não foram encontrados estudos que explorem em mais profundidade os muitos conceitos teóricos existentes. Assim, este trabalho aplica conceitos teóricos importantes da Teoria de Espaços Métricos para desenvolver técnicas que auxiliem o tratamento e a manipulação dos diversos dados complexos, visando principalmente o desenvolvimento de métodos de indexação mais eficientes. É desenvolvida uma técnica para realizar um mapeamento de espaços métricos que leva à atenuação do efeito da maldição da dimensionalidade, a partir de uma aplicação lipschitziana real baseada em uma função de deformação do espaço das distâncias entre os elementos do conjunto. Foi mostrado que uma função do tipo exponecial deforma as distâncias de modo a diminuir os efeitos da maldição da dimensionalidade, melhorando assim o desempenho nas consultas. Uma segunda contribuição é o desenvolvimento de uma técnica para a imersão de espaços métricos, realizada de maneira a preservar a ordem das distâncias, possibilitando a utilização de propriedades no espaço de imersão. A imersão de espaços métricos no \' R POT. n\' possibilita a utilização da lei dos cossenos e assim viabiliza o cálculo de distâncias entre elementos e um hiperplano métrico, permitindo aumentar a agilidade à consultas por similaridade. O uso do hiperplano métrico foi exemplificado construindo uma árvore binária métrica, e também foi aplicado em um método de acesso métrico, a família MMH de métodos de acesso métrico, melhorando o particionamento do espaço dos dados |
id |
USP_60509eb14c8d1e29fd112f7a7bdb3f03 |
---|---|
oai_identifier_str |
oai:teses.usp.br:tde-22092010-144202 |
network_acronym_str |
USP |
network_name_str |
Biblioteca Digital de Teses e Dissertações da USP |
repository_id_str |
2721 |
spelling |
Explorando conceitos da teoria de espaços métricos em consultas por similaridade sobre dados complexosExploring concepts of metric space theory in similarity queries over complex dataConsultas por similaridadeEspaços métricosImersões de espaçosMétodo de acesso métricoMetric access methodsMetric spacesSimilarity queriesSpace immersionsEstruturas de indexação para domínios métricos são úteis para agilizar consultas por similaridade sobre dados complexos, tais como imagens, onde o custo computacional da comparação de dois itens de dados geralmente é alto. O estado da arte para executar consultas por similaridade está centrado na utilização dos chamados \"Métodos de Acesso Métrico\" (MAM). Tais métodos consideram os dados como elementos de um espaço métrico, onde apenas valem as propriedades fundamentais para que um espaço seja considerado métrico, onde a única informação que os MAMs utilizam é a medida de similaridade entre pares de elementos do domínio. No campo teórico, espaços métricos são extensamente estudados e servem de base para diversas áreas da Matemática. No entanto, a maioria dos trabalhos que têm sido desenvolvidos em Computação se restringem a utilizar as definições básicas desses espaços, e não foram encontrados estudos que explorem em mais profundidade os muitos conceitos teóricos existentes. Assim, este trabalho aplica conceitos teóricos importantes da Teoria de Espaços Métricos para desenvolver técnicas que auxiliem o tratamento e a manipulação dos diversos dados complexos, visando principalmente o desenvolvimento de métodos de indexação mais eficientes. É desenvolvida uma técnica para realizar um mapeamento de espaços métricos que leva à atenuação do efeito da maldição da dimensionalidade, a partir de uma aplicação lipschitziana real baseada em uma função de deformação do espaço das distâncias entre os elementos do conjunto. Foi mostrado que uma função do tipo exponecial deforma as distâncias de modo a diminuir os efeitos da maldição da dimensionalidade, melhorando assim o desempenho nas consultas. Uma segunda contribuição é o desenvolvimento de uma técnica para a imersão de espaços métricos, realizada de maneira a preservar a ordem das distâncias, possibilitando a utilização de propriedades no espaço de imersão. A imersão de espaços métricos no \' R POT. n\' possibilita a utilização da lei dos cossenos e assim viabiliza o cálculo de distâncias entre elementos e um hiperplano métrico, permitindo aumentar a agilidade à consultas por similaridade. O uso do hiperplano métrico foi exemplificado construindo uma árvore binária métrica, e também foi aplicado em um método de acesso métrico, a família MMH de métodos de acesso métrico, melhorando o particionamento do espaço dos dadosThe access methods designed for metric domains are useful to answer similarity queries on any type of data, being specially useful to index complex data, such as images, where the computacional cost of comparison are high. The main mecanism used up to now to perform similarity queries is centered on \"Metric Acess Methods\" (MAM). Such methods consider data as elements that belong to a metric space, where only hold the properties that define the metric space. Therefore, the only information that a MAM can use is the similarity measure between pairs of elements in the domain. Metric spaces are extremelly well studied and is the basis for many mathematics areas. However, most researches from computer science are restrained to use the basic properties of metric spaces, not exploring the various existing theorical concepts. This work apply theoretical concepts of metric spaces to develop techniques aiding the treatment and manipulation of diverse complex data, aiming at developing more efficient indexing methods. A technique of mapping spaces was developed in order to ease the dimensionality curse effects, basing on a real lipschitz application that uses a stretching function that changes the distance space of elements. It was shown that an exponential function changes the distances space reducing the dimensionality curse effects, improving query operations. A second contribution is the developing of a technique based on metric space immersion, preserving the distances order between pairs of elements, allowing the usage of immersion space properties. The immersion of metric spaces into \'R POT. n\' allow the usage of the cossine law leading to the determination of distances between elements and a hiperplane, forming metric hiperplanes. The use of the metric hiperplanes lead to an improvement of query operations performance. The metric hiperplane itself formed the binary metric tree, and when applied to a metric access method, lead the formation of a family of metric access methods that improves the metric space particioning achieving faster similarity queriesBiblioteca Digitais de Teses e Dissertações da USPTraina Junior, CaetanoPola, Ives Renê Venturini2010-08-25info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfhttp://www.teses.usp.br/teses/disponiveis/55/55134/tde-22092010-144202/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesspor2016-07-28T16:10:11Zoai:teses.usp.br:tde-22092010-144202Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212016-07-28T16:10:11Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false |
dc.title.none.fl_str_mv |
Explorando conceitos da teoria de espaços métricos em consultas por similaridade sobre dados complexos Exploring concepts of metric space theory in similarity queries over complex data |
title |
Explorando conceitos da teoria de espaços métricos em consultas por similaridade sobre dados complexos |
spellingShingle |
Explorando conceitos da teoria de espaços métricos em consultas por similaridade sobre dados complexos Pola, Ives Renê Venturini Consultas por similaridade Espaços métricos Imersões de espaços Método de acesso métrico Metric access methods Metric spaces Similarity queries Space immersions |
title_short |
Explorando conceitos da teoria de espaços métricos em consultas por similaridade sobre dados complexos |
title_full |
Explorando conceitos da teoria de espaços métricos em consultas por similaridade sobre dados complexos |
title_fullStr |
Explorando conceitos da teoria de espaços métricos em consultas por similaridade sobre dados complexos |
title_full_unstemmed |
Explorando conceitos da teoria de espaços métricos em consultas por similaridade sobre dados complexos |
title_sort |
Explorando conceitos da teoria de espaços métricos em consultas por similaridade sobre dados complexos |
author |
Pola, Ives Renê Venturini |
author_facet |
Pola, Ives Renê Venturini |
author_role |
author |
dc.contributor.none.fl_str_mv |
Traina Junior, Caetano |
dc.contributor.author.fl_str_mv |
Pola, Ives Renê Venturini |
dc.subject.por.fl_str_mv |
Consultas por similaridade Espaços métricos Imersões de espaços Método de acesso métrico Metric access methods Metric spaces Similarity queries Space immersions |
topic |
Consultas por similaridade Espaços métricos Imersões de espaços Método de acesso métrico Metric access methods Metric spaces Similarity queries Space immersions |
description |
Estruturas de indexação para domínios métricos são úteis para agilizar consultas por similaridade sobre dados complexos, tais como imagens, onde o custo computacional da comparação de dois itens de dados geralmente é alto. O estado da arte para executar consultas por similaridade está centrado na utilização dos chamados \"Métodos de Acesso Métrico\" (MAM). Tais métodos consideram os dados como elementos de um espaço métrico, onde apenas valem as propriedades fundamentais para que um espaço seja considerado métrico, onde a única informação que os MAMs utilizam é a medida de similaridade entre pares de elementos do domínio. No campo teórico, espaços métricos são extensamente estudados e servem de base para diversas áreas da Matemática. No entanto, a maioria dos trabalhos que têm sido desenvolvidos em Computação se restringem a utilizar as definições básicas desses espaços, e não foram encontrados estudos que explorem em mais profundidade os muitos conceitos teóricos existentes. Assim, este trabalho aplica conceitos teóricos importantes da Teoria de Espaços Métricos para desenvolver técnicas que auxiliem o tratamento e a manipulação dos diversos dados complexos, visando principalmente o desenvolvimento de métodos de indexação mais eficientes. É desenvolvida uma técnica para realizar um mapeamento de espaços métricos que leva à atenuação do efeito da maldição da dimensionalidade, a partir de uma aplicação lipschitziana real baseada em uma função de deformação do espaço das distâncias entre os elementos do conjunto. Foi mostrado que uma função do tipo exponecial deforma as distâncias de modo a diminuir os efeitos da maldição da dimensionalidade, melhorando assim o desempenho nas consultas. Uma segunda contribuição é o desenvolvimento de uma técnica para a imersão de espaços métricos, realizada de maneira a preservar a ordem das distâncias, possibilitando a utilização de propriedades no espaço de imersão. A imersão de espaços métricos no \' R POT. n\' possibilita a utilização da lei dos cossenos e assim viabiliza o cálculo de distâncias entre elementos e um hiperplano métrico, permitindo aumentar a agilidade à consultas por similaridade. O uso do hiperplano métrico foi exemplificado construindo uma árvore binária métrica, e também foi aplicado em um método de acesso métrico, a família MMH de métodos de acesso métrico, melhorando o particionamento do espaço dos dados |
publishDate |
2010 |
dc.date.none.fl_str_mv |
2010-08-25 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
format |
doctoralThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://www.teses.usp.br/teses/disponiveis/55/55134/tde-22092010-144202/ |
url |
http://www.teses.usp.br/teses/disponiveis/55/55134/tde-22092010-144202/ |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.relation.none.fl_str_mv |
|
dc.rights.driver.fl_str_mv |
Liberar o conteúdo para acesso público. info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Liberar o conteúdo para acesso público. |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.coverage.none.fl_str_mv |
|
dc.publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações da USP instname:Universidade de São Paulo (USP) instacron:USP |
instname_str |
Universidade de São Paulo (USP) |
instacron_str |
USP |
institution |
USP |
reponame_str |
Biblioteca Digital de Teses e Dissertações da USP |
collection |
Biblioteca Digital de Teses e Dissertações da USP |
repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP) |
repository.mail.fl_str_mv |
virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br |
_version_ |
1815257280910721024 |