Natural language explanations of classifier behavior.
Autor(a) principal: | |
---|---|
Data de Publicação: | 2020 |
Tipo de documento: | Dissertação |
Idioma: | eng |
Título da fonte: | Biblioteca Digital de Teses e Dissertações da USP |
Texto Completo: | https://www.teses.usp.br/teses/disponiveis/3/3141/tde-22012021-130945/ |
Resumo: | As machine learning models are increasingly used in a wide range of applications, there is growing concern about the challenges involved in understanding their predictions. The field of interpretability/explainability of artificial intelligences has developed several approaches and tools that aim at improving the understanding of such systems. These tools tend to focus on the knowledgeable data scientist as their main user. The tools usually produce plots, charts or another graphical representations (such as superposition of color on an image or text); thus the user must have some technical background so as to consume the information. This work developed techniques that generate a textual explanation for the internal behavior of a given classifier, aiming at users of machine learning with limited technical proficiency. A package for textual explanation generation, called NaLax, was built and tested with users. Preliminary results were published and presented at the IEEE International Conference of Artificial Intelligence and Knowledge Engineering (AIKE) in 2019. |
id |
USP_619abb6e91ffe214b30ee7fe352ddc40 |
---|---|
oai_identifier_str |
oai:teses.usp.br:tde-22012021-130945 |
network_acronym_str |
USP |
network_name_str |
Biblioteca Digital de Teses e Dissertações da USP |
repository_id_str |
2721 |
spelling |
Natural language explanations of classifier behavior.Explicações em linguagem natural sobre o comportamento de classificadores.Aprendizado computacionalInterpretabilidadeInterpretabilityMachine learningTransparênciaTransparencyAs machine learning models are increasingly used in a wide range of applications, there is growing concern about the challenges involved in understanding their predictions. The field of interpretability/explainability of artificial intelligences has developed several approaches and tools that aim at improving the understanding of such systems. These tools tend to focus on the knowledgeable data scientist as their main user. The tools usually produce plots, charts or another graphical representations (such as superposition of color on an image or text); thus the user must have some technical background so as to consume the information. This work developed techniques that generate a textual explanation for the internal behavior of a given classifier, aiming at users of machine learning with limited technical proficiency. A package for textual explanation generation, called NaLax, was built and tested with users. Preliminary results were published and presented at the IEEE International Conference of Artificial Intelligence and Knowledge Engineering (AIKE) in 2019.Enquanto modelos de aprendizado estatístico avançam em um número cada vez maior de aplicações reais, tem-se percebido que o entendimento das predições apresentadas por estes modelos e bastante desafiador. O campo de estudo focado em interpretabilidade / explicabilidade de inteligências artificiais tem desenvolvido diversas abordagens e ferramentas para melhorar o entendimento desses sistemas. Tais ferramentas tendem a ser direcionadas a cientistas de dados com conhecimento técnico. Os resultados obtidos a partir delas podem ser tabelas, gráficos ou outra representação gráfica (como superposição de cores em um texto, por exemplo); desta maneira, o usuário necessita de conhecimento técnico prévio para o consumo desta informação. Neste trabalho são implementadas técnicas que geram explicações textuais sobre o funcionamento interno de um dado classificador, focando em usuários com menor proeficiência técnica a respeito dos recursos de aprendizado de máquinas. Um pacote de geração de explicações textuais, chamado NaLax, foi construído e testado do usuários. Resultados preliminares foram publicados e apresentados na IEEE International Conference of Artificial Intelligence and Knowledge Engineering (AIKE) em 2019.Biblioteca Digitais de Teses e Dissertações da USPCozman, Fabio GagliardiAquino, Rodrigo Monteiro de2020-07-30info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttps://www.teses.usp.br/teses/disponiveis/3/3141/tde-22012021-130945/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesseng2024-10-09T12:45:42Zoai:teses.usp.br:tde-22012021-130945Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212024-10-09T12:45:42Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false |
dc.title.none.fl_str_mv |
Natural language explanations of classifier behavior. Explicações em linguagem natural sobre o comportamento de classificadores. |
title |
Natural language explanations of classifier behavior. |
spellingShingle |
Natural language explanations of classifier behavior. Aquino, Rodrigo Monteiro de Aprendizado computacional Interpretabilidade Interpretability Machine learning Transparência Transparency |
title_short |
Natural language explanations of classifier behavior. |
title_full |
Natural language explanations of classifier behavior. |
title_fullStr |
Natural language explanations of classifier behavior. |
title_full_unstemmed |
Natural language explanations of classifier behavior. |
title_sort |
Natural language explanations of classifier behavior. |
author |
Aquino, Rodrigo Monteiro de |
author_facet |
Aquino, Rodrigo Monteiro de |
author_role |
author |
dc.contributor.none.fl_str_mv |
Cozman, Fabio Gagliardi |
dc.contributor.author.fl_str_mv |
Aquino, Rodrigo Monteiro de |
dc.subject.por.fl_str_mv |
Aprendizado computacional Interpretabilidade Interpretability Machine learning Transparência Transparency |
topic |
Aprendizado computacional Interpretabilidade Interpretability Machine learning Transparência Transparency |
description |
As machine learning models are increasingly used in a wide range of applications, there is growing concern about the challenges involved in understanding their predictions. The field of interpretability/explainability of artificial intelligences has developed several approaches and tools that aim at improving the understanding of such systems. These tools tend to focus on the knowledgeable data scientist as their main user. The tools usually produce plots, charts or another graphical representations (such as superposition of color on an image or text); thus the user must have some technical background so as to consume the information. This work developed techniques that generate a textual explanation for the internal behavior of a given classifier, aiming at users of machine learning with limited technical proficiency. A package for textual explanation generation, called NaLax, was built and tested with users. Preliminary results were published and presented at the IEEE International Conference of Artificial Intelligence and Knowledge Engineering (AIKE) in 2019. |
publishDate |
2020 |
dc.date.none.fl_str_mv |
2020-07-30 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://www.teses.usp.br/teses/disponiveis/3/3141/tde-22012021-130945/ |
url |
https://www.teses.usp.br/teses/disponiveis/3/3141/tde-22012021-130945/ |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
|
dc.rights.driver.fl_str_mv |
Liberar o conteúdo para acesso público. info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Liberar o conteúdo para acesso público. |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.coverage.none.fl_str_mv |
|
dc.publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações da USP instname:Universidade de São Paulo (USP) instacron:USP |
instname_str |
Universidade de São Paulo (USP) |
instacron_str |
USP |
institution |
USP |
reponame_str |
Biblioteca Digital de Teses e Dissertações da USP |
collection |
Biblioteca Digital de Teses e Dissertações da USP |
repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP) |
repository.mail.fl_str_mv |
virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br |
_version_ |
1815256528566878208 |