Caracterização autoral a partir de textos utilizando redes neurais artificiais
Autor(a) principal: | |
---|---|
Data de Publicação: | 2019 |
Tipo de documento: | Dissertação |
Idioma: | por |
Título da fonte: | Biblioteca Digital de Teses e Dissertações da USP |
Texto Completo: | https://www.teses.usp.br/teses/disponiveis/100/100131/tde-24012020-202805/ |
Resumo: | A caracterização autoral (CA) é uma tarefa computacional de reconhecimento de características de autores de textos com base em seus padrões linguísticos. O uso de modelos computacionais de CA permite inferir características sociais a partir do texto, mesmo que os autores não escolham conscientemente colocar indicadores dessas características no texto. A tarefa de CA pode ser importante para diversas aplicações práticas, tais como análise forense e marketing. Abordagens tradicionais de CA muitas vezes utilizam conhecimento linguístico, que exige conhecimento prévio e demanda esforço manual para extração de características. Recentemente, o uso de redes neurais artificiais têm demonstrado resultado satisfatório em problemas de processamento de linguagem natural (PLN), entretanto, para caracterização autoral, apresenta um nível variado de sucesso. Este trabalho tem o objetivo de organizar, definir e explorar diversas tarefas de caracterização autoral a partir de córpus textuais, abrangendo três idiomas (i.e., português, inglês e espanhol) e quatro domínios textuais (i.e., redes sociais, questionários, SMS e blogs). Foram propostos seis modelos baseados em redes neurais e Word Embeddings, comparando-se com sistemas de baseline utilizando regressão logística e TF-IDF. Os resultados dos modelos de Long Short Term Memory (LSTM) with self-attention e Convolutional Neural Network (CNN) sugerem que tais técnicas apresentam desempenho superior ao baseline quando córpus grandes são utilizados. Os modelos de LSTM with self-attention baseados em representação de Word Embeddings e Char apresentam desempenho superior ao estado da arte da competição PAN-CLEF 2013 |
id |
USP_627cf7f18bd295adfa0c245aad244edf |
---|---|
oai_identifier_str |
oai:teses.usp.br:tde-24012020-202805 |
network_acronym_str |
USP |
network_name_str |
Biblioteca Digital de Teses e Dissertações da USP |
repository_id_str |
2721 |
spelling |
Caracterização autoral a partir de textos utilizando redes neurais artificiaisAuthor Profiling from texts using artificial neural networksArtificial Neural NetworksAuthor ProfilingCaracterização autoralRedes Neurais ArtificiaisWord EmbeddingsWord EmbeddingsA caracterização autoral (CA) é uma tarefa computacional de reconhecimento de características de autores de textos com base em seus padrões linguísticos. O uso de modelos computacionais de CA permite inferir características sociais a partir do texto, mesmo que os autores não escolham conscientemente colocar indicadores dessas características no texto. A tarefa de CA pode ser importante para diversas aplicações práticas, tais como análise forense e marketing. Abordagens tradicionais de CA muitas vezes utilizam conhecimento linguístico, que exige conhecimento prévio e demanda esforço manual para extração de características. Recentemente, o uso de redes neurais artificiais têm demonstrado resultado satisfatório em problemas de processamento de linguagem natural (PLN), entretanto, para caracterização autoral, apresenta um nível variado de sucesso. Este trabalho tem o objetivo de organizar, definir e explorar diversas tarefas de caracterização autoral a partir de córpus textuais, abrangendo três idiomas (i.e., português, inglês e espanhol) e quatro domínios textuais (i.e., redes sociais, questionários, SMS e blogs). Foram propostos seis modelos baseados em redes neurais e Word Embeddings, comparando-se com sistemas de baseline utilizando regressão logística e TF-IDF. Os resultados dos modelos de Long Short Term Memory (LSTM) with self-attention e Convolutional Neural Network (CNN) sugerem que tais técnicas apresentam desempenho superior ao baseline quando córpus grandes são utilizados. Os modelos de LSTM with self-attention baseados em representação de Word Embeddings e Char apresentam desempenho superior ao estado da arte da competição PAN-CLEF 2013Author Profiling (AP) is a computational task of recognizing the characteristics of text authors based on their linguistic patterns. The use of computer computational models allows us to infer social characteristics from the text, even if the authors do not consciously choose to place indicators of these characteristics in the text. The AP task can be important for many practical applications, such as forensic analysis and marketing. Traditional AP approaches often use language knowledge, which requires prior knowledge and requires manual effort to extract features. Recently, the use of artificial neural networks has shown satisfactory results in natural language processing (NLP) problems, however, for author profiling, presents a varied level of success. This paper aims to organize, define and explore various authorial characterization tasks from the textual corpus considered, covering three languages (i.e, Portuguese, English and Spanish) and four textual domains (i.e., social networks, questionnaires, SMS and blogs) . Six models based on neural networks and Word Embeddings were proposed, compared with baseline systems using logistic regression and TF-IDF. The results suggest that the Long Short Term Memory with self-attention and Convolutional Neural Network models outperform baseline system in larger volume corpus. The LSTM with self-attention model based on Word Embeddings and Char text representation outperform the state-of-the-art PAN-CLEF 2013 competitionBiblioteca Digitais de Teses e Dissertações da USPParaboni, IvandreDias, Rafael Felipe Sandroni2019-10-11info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttps://www.teses.usp.br/teses/disponiveis/100/100131/tde-24012020-202805/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesspor2024-10-09T13:16:04Zoai:teses.usp.br:tde-24012020-202805Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212024-10-09T13:16:04Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false |
dc.title.none.fl_str_mv |
Caracterização autoral a partir de textos utilizando redes neurais artificiais Author Profiling from texts using artificial neural networks |
title |
Caracterização autoral a partir de textos utilizando redes neurais artificiais |
spellingShingle |
Caracterização autoral a partir de textos utilizando redes neurais artificiais Dias, Rafael Felipe Sandroni Artificial Neural Networks Author Profiling Caracterização autoral Redes Neurais Artificiais Word Embeddings Word Embeddings |
title_short |
Caracterização autoral a partir de textos utilizando redes neurais artificiais |
title_full |
Caracterização autoral a partir de textos utilizando redes neurais artificiais |
title_fullStr |
Caracterização autoral a partir de textos utilizando redes neurais artificiais |
title_full_unstemmed |
Caracterização autoral a partir de textos utilizando redes neurais artificiais |
title_sort |
Caracterização autoral a partir de textos utilizando redes neurais artificiais |
author |
Dias, Rafael Felipe Sandroni |
author_facet |
Dias, Rafael Felipe Sandroni |
author_role |
author |
dc.contributor.none.fl_str_mv |
Paraboni, Ivandre |
dc.contributor.author.fl_str_mv |
Dias, Rafael Felipe Sandroni |
dc.subject.por.fl_str_mv |
Artificial Neural Networks Author Profiling Caracterização autoral Redes Neurais Artificiais Word Embeddings Word Embeddings |
topic |
Artificial Neural Networks Author Profiling Caracterização autoral Redes Neurais Artificiais Word Embeddings Word Embeddings |
description |
A caracterização autoral (CA) é uma tarefa computacional de reconhecimento de características de autores de textos com base em seus padrões linguísticos. O uso de modelos computacionais de CA permite inferir características sociais a partir do texto, mesmo que os autores não escolham conscientemente colocar indicadores dessas características no texto. A tarefa de CA pode ser importante para diversas aplicações práticas, tais como análise forense e marketing. Abordagens tradicionais de CA muitas vezes utilizam conhecimento linguístico, que exige conhecimento prévio e demanda esforço manual para extração de características. Recentemente, o uso de redes neurais artificiais têm demonstrado resultado satisfatório em problemas de processamento de linguagem natural (PLN), entretanto, para caracterização autoral, apresenta um nível variado de sucesso. Este trabalho tem o objetivo de organizar, definir e explorar diversas tarefas de caracterização autoral a partir de córpus textuais, abrangendo três idiomas (i.e., português, inglês e espanhol) e quatro domínios textuais (i.e., redes sociais, questionários, SMS e blogs). Foram propostos seis modelos baseados em redes neurais e Word Embeddings, comparando-se com sistemas de baseline utilizando regressão logística e TF-IDF. Os resultados dos modelos de Long Short Term Memory (LSTM) with self-attention e Convolutional Neural Network (CNN) sugerem que tais técnicas apresentam desempenho superior ao baseline quando córpus grandes são utilizados. Os modelos de LSTM with self-attention baseados em representação de Word Embeddings e Char apresentam desempenho superior ao estado da arte da competição PAN-CLEF 2013 |
publishDate |
2019 |
dc.date.none.fl_str_mv |
2019-10-11 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://www.teses.usp.br/teses/disponiveis/100/100131/tde-24012020-202805/ |
url |
https://www.teses.usp.br/teses/disponiveis/100/100131/tde-24012020-202805/ |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.relation.none.fl_str_mv |
|
dc.rights.driver.fl_str_mv |
Liberar o conteúdo para acesso público. info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Liberar o conteúdo para acesso público. |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.coverage.none.fl_str_mv |
|
dc.publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações da USP instname:Universidade de São Paulo (USP) instacron:USP |
instname_str |
Universidade de São Paulo (USP) |
instacron_str |
USP |
institution |
USP |
reponame_str |
Biblioteca Digital de Teses e Dissertações da USP |
collection |
Biblioteca Digital de Teses e Dissertações da USP |
repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP) |
repository.mail.fl_str_mv |
virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br |
_version_ |
1815256532640595968 |