O teorema de Bishop-Phelps e alguns resultados associados
Autor(a) principal: | |
---|---|
Data de Publicação: | 1998 |
Tipo de documento: | Dissertação |
Idioma: | por |
Título da fonte: | Biblioteca Digital de Teses e Dissertações da USP |
Texto Completo: | https://teses.usp.br/teses/disponiveis/45/45131/tde-20210729-021314/ |
Resumo: | Este trabalho tem por objetivo estudar o teorema clássico de Bishop-Phelps e os primeiros passos dados no sentido de sua generalização natural: para quais espaços de Banach X,Y o conjunto dos operadores lineares contínuos de X em Y que atingemsuas respectivas normas é denso no conjunto dos operadores lineares limitados definidos nestes mesmos espaços? Apresentamos aqui vários resultados de J.Lindenstrauss ([Lindenst)]: é sempre verdade quando X for reflexivo mas, em geral, a respostaé negativa (ainda que Y = X). Restringiremos nosso estudo aos fatos por ele obtidos relacionados com a 'propriedade A', a convexidade das bolas unitárias e outras características geométricas dos espaços de Banach envolvidos terão interessantesconsequências. Quanto à 'propriedade B', definimos o espaço estudado por W.T.Gowers ([Gowers]) e apresentamos sua prova de que os espaços 'L POT.P ANTPOT.' s' (l< p< 'INFINITO') não a possuem. Explorando características do espáco de Gowersencerramos o trabalho com um exemplo de D.Acosta, F.Aguirre e R.Payá ([A.A.P.2]) que mostra a não existência, para um espaço de Banach qualquer, de um teorema de Bishop-Phelps no contexto das formas bilineares |
id |
USP_639b6981749346b8ce9ca1b45d447f39 |
---|---|
oai_identifier_str |
oai:teses.usp.br:tde-20210729-021314 |
network_acronym_str |
USP |
network_name_str |
Biblioteca Digital de Teses e Dissertações da USP |
repository_id_str |
2721 |
spelling |
O teorema de Bishop-Phelps e alguns resultados associadosnot availableOperadoresOperadores LinearesEste trabalho tem por objetivo estudar o teorema clássico de Bishop-Phelps e os primeiros passos dados no sentido de sua generalização natural: para quais espaços de Banach X,Y o conjunto dos operadores lineares contínuos de X em Y que atingemsuas respectivas normas é denso no conjunto dos operadores lineares limitados definidos nestes mesmos espaços? Apresentamos aqui vários resultados de J.Lindenstrauss ([Lindenst)]: é sempre verdade quando X for reflexivo mas, em geral, a respostaé negativa (ainda que Y = X). Restringiremos nosso estudo aos fatos por ele obtidos relacionados com a 'propriedade A', a convexidade das bolas unitárias e outras características geométricas dos espaços de Banach envolvidos terão interessantesconsequências. Quanto à 'propriedade B', definimos o espaço estudado por W.T.Gowers ([Gowers]) e apresentamos sua prova de que os espaços 'L POT.P ANTPOT.' s' (l< p< 'INFINITO') não a possuem. Explorando características do espáco de Gowersencerramos o trabalho com um exemplo de D.Acosta, F.Aguirre e R.Payá ([A.A.P.2]) que mostra a não existência, para um espaço de Banach qualquer, de um teorema de Bishop-Phelps no contexto das formas bilinearesThe main purpose of this work is to study the classical Bishop-Phelps theorem and the first steps made to its natural generalization: to which pairs of Banach spaces X,Y is it true that the set of norm-attaining linear operators from X to Y isdense in the set of bounded linear operators from X to Y/ We shall present here several results by Lindenstrauss ([Lindenst]): it is always the case if X is reflexive and, in general, the answer is negative (even when Y = X). We shall restrictourselves to his results related to 'property A', the rule played by the unit cells' convexity and other geometric features of the Banach spaces concerned do have far-reaching consequences. As far as Lindenstrauss'property B' is concerned, weconcentrate on the Banach space used by W.T.Gowers ([Gowers]). We present his proof of the fact that 'L POT.p' (l < p< 'INFINITO') does not have 'property B' and, getting the most ou ot Gowers space porperties, we shall exhibit an example due toD.Acosta, F.Aguirre and R.Payá ([A.A.P.2]) on the (non-existence of a) bilinear version of the Bishop-Phelps theorem on an arbitrary Banach spaceBiblioteca Digitais de Teses e Dissertações da USPLourenço, Mary LilianSkilnik, Fábio1998-10-30info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttps://teses.usp.br/teses/disponiveis/45/45131/tde-20210729-021314/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesspor2021-07-31T19:00:59Zoai:teses.usp.br:tde-20210729-021314Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212021-07-31T19:00:59Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false |
dc.title.none.fl_str_mv |
O teorema de Bishop-Phelps e alguns resultados associados not available |
title |
O teorema de Bishop-Phelps e alguns resultados associados |
spellingShingle |
O teorema de Bishop-Phelps e alguns resultados associados Skilnik, Fábio Operadores Operadores Lineares |
title_short |
O teorema de Bishop-Phelps e alguns resultados associados |
title_full |
O teorema de Bishop-Phelps e alguns resultados associados |
title_fullStr |
O teorema de Bishop-Phelps e alguns resultados associados |
title_full_unstemmed |
O teorema de Bishop-Phelps e alguns resultados associados |
title_sort |
O teorema de Bishop-Phelps e alguns resultados associados |
author |
Skilnik, Fábio |
author_facet |
Skilnik, Fábio |
author_role |
author |
dc.contributor.none.fl_str_mv |
Lourenço, Mary Lilian |
dc.contributor.author.fl_str_mv |
Skilnik, Fábio |
dc.subject.por.fl_str_mv |
Operadores Operadores Lineares |
topic |
Operadores Operadores Lineares |
description |
Este trabalho tem por objetivo estudar o teorema clássico de Bishop-Phelps e os primeiros passos dados no sentido de sua generalização natural: para quais espaços de Banach X,Y o conjunto dos operadores lineares contínuos de X em Y que atingemsuas respectivas normas é denso no conjunto dos operadores lineares limitados definidos nestes mesmos espaços? Apresentamos aqui vários resultados de J.Lindenstrauss ([Lindenst)]: é sempre verdade quando X for reflexivo mas, em geral, a respostaé negativa (ainda que Y = X). Restringiremos nosso estudo aos fatos por ele obtidos relacionados com a 'propriedade A', a convexidade das bolas unitárias e outras características geométricas dos espaços de Banach envolvidos terão interessantesconsequências. Quanto à 'propriedade B', definimos o espaço estudado por W.T.Gowers ([Gowers]) e apresentamos sua prova de que os espaços 'L POT.P ANTPOT.' s' (l< p< 'INFINITO') não a possuem. Explorando características do espáco de Gowersencerramos o trabalho com um exemplo de D.Acosta, F.Aguirre e R.Payá ([A.A.P.2]) que mostra a não existência, para um espaço de Banach qualquer, de um teorema de Bishop-Phelps no contexto das formas bilineares |
publishDate |
1998 |
dc.date.none.fl_str_mv |
1998-10-30 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://teses.usp.br/teses/disponiveis/45/45131/tde-20210729-021314/ |
url |
https://teses.usp.br/teses/disponiveis/45/45131/tde-20210729-021314/ |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.relation.none.fl_str_mv |
|
dc.rights.driver.fl_str_mv |
Liberar o conteúdo para acesso público. info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Liberar o conteúdo para acesso público. |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.coverage.none.fl_str_mv |
|
dc.publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações da USP instname:Universidade de São Paulo (USP) instacron:USP |
instname_str |
Universidade de São Paulo (USP) |
instacron_str |
USP |
institution |
USP |
reponame_str |
Biblioteca Digital de Teses e Dissertações da USP |
collection |
Biblioteca Digital de Teses e Dissertações da USP |
repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP) |
repository.mail.fl_str_mv |
virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br |
_version_ |
1815257207704387584 |