Visão artificial e morfometria na análise e classificação de espécies biológicas
Autor(a) principal: | |
---|---|
Data de Publicação: | 2010 |
Tipo de documento: | Tese |
Idioma: | por |
Título da fonte: | Biblioteca Digital de Teses e Dissertações da USP |
Texto Completo: | http://www.teses.usp.br/teses/disponiveis/55/55134/tde-15042010-105936/ |
Resumo: | A descoberta da história taxonômica e evolutiva das espécies é a principal fronteira das pesquisas científicas em diversas áreas do conhecimento. A biodiversidade dos indivíduos associada a grande variabilidade morfológica, torna essa tarefa um verdadeiro desafio. Os métodos tradicionais baseados na inspeção visual estão ultrapassados. Hoje em dia, os avanços tecnológicos têm colocado à disposição dos pesquisadores um arcabouço de ferramentas para o estudo das espécies. Este trabalho tem como objetivo investigar e desenvolver modelos computacionais capazes de analisar e classificar espécies biológicas por meio de características morfométricas. Para isso, técnicas de análise de imagens foram utilizadas para determinar a variabilidade das espécies em função de três informações de interesse: forma, estrutura tubular e textura. A potencialidade das metodologias foi avaliada por meio das seguintes espécies biológicas: maracujás silvestres do gênero Passiflora, eucaliptos do gênero Eucalyptus e arroz do gênero Oryza. Os experimentos produziram um conjunto de dados que representam uma detalhada descrição sobre a morfometria das espécies. Os resultados demonstraram que as técnicas de visão artificial são importantes para o estudo das espécies. As técnicas de análise de formas indicaram a viabilidade dessas metodologias na classificação das espécies, em particular, as redes complexas, a transformada de wavelets e a dimensão fractal multiescala que alcançaram altas taxas de classificações corretas. Os métodos desenvolvidos para análise de estruturas tubulares também demonstraram grande potencialidade na discriminação das espécies, principalmente a assinatura fractal multiescala a partir de pontos biométricos. As técnicas de análise de textura desenvolvidas também contribuíram para o estudo das espécies. Os resultados obtidos com as abordagens sinalizam que a relação entre biologia e computação é essencial para o desenvolvimento de metodologias eficientes. A inferência evolutiva das espécies foi um importante resultado obtido com os dados morfométricos, tanto a partir da forma, quanto da estrutura tubular e da textura. Testes estatísticos comprovaram a correlação entre os dados morfométricos obtidos por visão artificial e os dados moleculares de reconstrução filogenética. A multidisciplinaridade é o ponto central do trabalho, que está inserido na fronteira das áreas de visão artificial, morfometria e biologia. Com isso, essa simbiose resultou em promissoras contribuições para as áreas envolvidas |
id |
USP_6576e2bf093df15ec7a38270a183d4d2 |
---|---|
oai_identifier_str |
oai:teses.usp.br:tde-15042010-105936 |
network_acronym_str |
USP |
network_name_str |
Biblioteca Digital de Teses e Dissertações da USP |
repository_id_str |
2721 |
spelling |
Visão artificial e morfometria na análise e classificação de espécies biológicasArtificial vision and morfometry in analysis and classification of biological speciesAnálise de imagensArtificial visionImage analysisMorfometriaMorphometryTaxonomiaTaxonomyVisão artificialA descoberta da história taxonômica e evolutiva das espécies é a principal fronteira das pesquisas científicas em diversas áreas do conhecimento. A biodiversidade dos indivíduos associada a grande variabilidade morfológica, torna essa tarefa um verdadeiro desafio. Os métodos tradicionais baseados na inspeção visual estão ultrapassados. Hoje em dia, os avanços tecnológicos têm colocado à disposição dos pesquisadores um arcabouço de ferramentas para o estudo das espécies. Este trabalho tem como objetivo investigar e desenvolver modelos computacionais capazes de analisar e classificar espécies biológicas por meio de características morfométricas. Para isso, técnicas de análise de imagens foram utilizadas para determinar a variabilidade das espécies em função de três informações de interesse: forma, estrutura tubular e textura. A potencialidade das metodologias foi avaliada por meio das seguintes espécies biológicas: maracujás silvestres do gênero Passiflora, eucaliptos do gênero Eucalyptus e arroz do gênero Oryza. Os experimentos produziram um conjunto de dados que representam uma detalhada descrição sobre a morfometria das espécies. Os resultados demonstraram que as técnicas de visão artificial são importantes para o estudo das espécies. As técnicas de análise de formas indicaram a viabilidade dessas metodologias na classificação das espécies, em particular, as redes complexas, a transformada de wavelets e a dimensão fractal multiescala que alcançaram altas taxas de classificações corretas. Os métodos desenvolvidos para análise de estruturas tubulares também demonstraram grande potencialidade na discriminação das espécies, principalmente a assinatura fractal multiescala a partir de pontos biométricos. As técnicas de análise de textura desenvolvidas também contribuíram para o estudo das espécies. Os resultados obtidos com as abordagens sinalizam que a relação entre biologia e computação é essencial para o desenvolvimento de metodologias eficientes. A inferência evolutiva das espécies foi um importante resultado obtido com os dados morfométricos, tanto a partir da forma, quanto da estrutura tubular e da textura. Testes estatísticos comprovaram a correlação entre os dados morfométricos obtidos por visão artificial e os dados moleculares de reconstrução filogenética. A multidisciplinaridade é o ponto central do trabalho, que está inserido na fronteira das áreas de visão artificial, morfometria e biologia. Com isso, essa simbiose resultou em promissoras contribuições para as áreas envolvidasThe discovery of taxonomic and evolutionary history of species is the main frontier of scientific research in various knowledge areas. The biodiversity of living things associated with the great morphological variability, makes this task a rightful challenge. The traditional methodologies based on visual inspection are totally outdated. Nowadays, technological advances have made available to researchers a framework of tools for the study of the species. This study aims to investigate and develop computer models to perform analysis and classification of biological species from morphometric features. For this, techniques of image analysis were used to determine the variability of the species in terms of three information of interest: shape, tubular structure and texture. The capability of the methods was evaluated by follows biological species: passion fruits of genus Passiflora, eucalyptus of genus Eucalyptus and rice of genus Oryza. The experiments produced a detailed dataset about the morphometric information of the species. The results showed that the techniques of artificial vision are demonstrably important to the study of the species. The shape analysis techniques indicated the viability of these methodologies in the species classification, in special the complex networks, the wavelets transform and the multiscale fractal dimension, have achieved high rates of correct discrimination. The new methods developed for analysis of tubular structures have also show great potential in species classification, especially the multiscale fractal signature from biometrics points. The techniques developed for texture analysis also show significant results in the investigation of the species. The results obtained with the approaches indicate that the relationship biology and computing is essential for the development of efficient methods. The inference of evolutionary tree of species was an important result obtained with the morphometric data collected from form, tubular structure and texture. Statistical tests showed a correlation between the morphometric data obtained by artificial vision and molecular data of phylogenetic reconstruction. A multidisciplinary approach is the focus of the work, which is related to the areas of artificial vision, morphometry and biology. Thus, this symbiosis has resulted in important contributions to the areas involvedBiblioteca Digitais de Teses e Dissertações da USPBruno, Odemir MartinezPlotze, Rodrigo de Oliveira2010-02-11info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfhttp://www.teses.usp.br/teses/disponiveis/55/55134/tde-15042010-105936/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesspor2016-07-28T16:10:05Zoai:teses.usp.br:tde-15042010-105936Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212016-07-28T16:10:05Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false |
dc.title.none.fl_str_mv |
Visão artificial e morfometria na análise e classificação de espécies biológicas Artificial vision and morfometry in analysis and classification of biological species |
title |
Visão artificial e morfometria na análise e classificação de espécies biológicas |
spellingShingle |
Visão artificial e morfometria na análise e classificação de espécies biológicas Plotze, Rodrigo de Oliveira Análise de imagens Artificial vision Image analysis Morfometria Morphometry Taxonomia Taxonomy Visão artificial |
title_short |
Visão artificial e morfometria na análise e classificação de espécies biológicas |
title_full |
Visão artificial e morfometria na análise e classificação de espécies biológicas |
title_fullStr |
Visão artificial e morfometria na análise e classificação de espécies biológicas |
title_full_unstemmed |
Visão artificial e morfometria na análise e classificação de espécies biológicas |
title_sort |
Visão artificial e morfometria na análise e classificação de espécies biológicas |
author |
Plotze, Rodrigo de Oliveira |
author_facet |
Plotze, Rodrigo de Oliveira |
author_role |
author |
dc.contributor.none.fl_str_mv |
Bruno, Odemir Martinez |
dc.contributor.author.fl_str_mv |
Plotze, Rodrigo de Oliveira |
dc.subject.por.fl_str_mv |
Análise de imagens Artificial vision Image analysis Morfometria Morphometry Taxonomia Taxonomy Visão artificial |
topic |
Análise de imagens Artificial vision Image analysis Morfometria Morphometry Taxonomia Taxonomy Visão artificial |
description |
A descoberta da história taxonômica e evolutiva das espécies é a principal fronteira das pesquisas científicas em diversas áreas do conhecimento. A biodiversidade dos indivíduos associada a grande variabilidade morfológica, torna essa tarefa um verdadeiro desafio. Os métodos tradicionais baseados na inspeção visual estão ultrapassados. Hoje em dia, os avanços tecnológicos têm colocado à disposição dos pesquisadores um arcabouço de ferramentas para o estudo das espécies. Este trabalho tem como objetivo investigar e desenvolver modelos computacionais capazes de analisar e classificar espécies biológicas por meio de características morfométricas. Para isso, técnicas de análise de imagens foram utilizadas para determinar a variabilidade das espécies em função de três informações de interesse: forma, estrutura tubular e textura. A potencialidade das metodologias foi avaliada por meio das seguintes espécies biológicas: maracujás silvestres do gênero Passiflora, eucaliptos do gênero Eucalyptus e arroz do gênero Oryza. Os experimentos produziram um conjunto de dados que representam uma detalhada descrição sobre a morfometria das espécies. Os resultados demonstraram que as técnicas de visão artificial são importantes para o estudo das espécies. As técnicas de análise de formas indicaram a viabilidade dessas metodologias na classificação das espécies, em particular, as redes complexas, a transformada de wavelets e a dimensão fractal multiescala que alcançaram altas taxas de classificações corretas. Os métodos desenvolvidos para análise de estruturas tubulares também demonstraram grande potencialidade na discriminação das espécies, principalmente a assinatura fractal multiescala a partir de pontos biométricos. As técnicas de análise de textura desenvolvidas também contribuíram para o estudo das espécies. Os resultados obtidos com as abordagens sinalizam que a relação entre biologia e computação é essencial para o desenvolvimento de metodologias eficientes. A inferência evolutiva das espécies foi um importante resultado obtido com os dados morfométricos, tanto a partir da forma, quanto da estrutura tubular e da textura. Testes estatísticos comprovaram a correlação entre os dados morfométricos obtidos por visão artificial e os dados moleculares de reconstrução filogenética. A multidisciplinaridade é o ponto central do trabalho, que está inserido na fronteira das áreas de visão artificial, morfometria e biologia. Com isso, essa simbiose resultou em promissoras contribuições para as áreas envolvidas |
publishDate |
2010 |
dc.date.none.fl_str_mv |
2010-02-11 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
format |
doctoralThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://www.teses.usp.br/teses/disponiveis/55/55134/tde-15042010-105936/ |
url |
http://www.teses.usp.br/teses/disponiveis/55/55134/tde-15042010-105936/ |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.relation.none.fl_str_mv |
|
dc.rights.driver.fl_str_mv |
Liberar o conteúdo para acesso público. info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Liberar o conteúdo para acesso público. |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.coverage.none.fl_str_mv |
|
dc.publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações da USP instname:Universidade de São Paulo (USP) instacron:USP |
instname_str |
Universidade de São Paulo (USP) |
instacron_str |
USP |
institution |
USP |
reponame_str |
Biblioteca Digital de Teses e Dissertações da USP |
collection |
Biblioteca Digital de Teses e Dissertações da USP |
repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP) |
repository.mail.fl_str_mv |
virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br |
_version_ |
1815257017885917184 |