Visão artificial e morfometria na análise e classificação de espécies biológicas

Detalhes bibliográficos
Autor(a) principal: Plotze, Rodrigo de Oliveira
Data de Publicação: 2010
Tipo de documento: Tese
Idioma: por
Título da fonte: Biblioteca Digital de Teses e Dissertações da USP
Texto Completo: http://www.teses.usp.br/teses/disponiveis/55/55134/tde-15042010-105936/
Resumo: A descoberta da história taxonômica e evolutiva das espécies é a principal fronteira das pesquisas científicas em diversas áreas do conhecimento. A biodiversidade dos indivíduos associada a grande variabilidade morfológica, torna essa tarefa um verdadeiro desafio. Os métodos tradicionais baseados na inspeção visual estão ultrapassados. Hoje em dia, os avanços tecnológicos têm colocado à disposição dos pesquisadores um arcabouço de ferramentas para o estudo das espécies. Este trabalho tem como objetivo investigar e desenvolver modelos computacionais capazes de analisar e classificar espécies biológicas por meio de características morfométricas. Para isso, técnicas de análise de imagens foram utilizadas para determinar a variabilidade das espécies em função de três informações de interesse: forma, estrutura tubular e textura. A potencialidade das metodologias foi avaliada por meio das seguintes espécies biológicas: maracujás silvestres do gênero Passiflora, eucaliptos do gênero Eucalyptus e arroz do gênero Oryza. Os experimentos produziram um conjunto de dados que representam uma detalhada descrição sobre a morfometria das espécies. Os resultados demonstraram que as técnicas de visão artificial são importantes para o estudo das espécies. As técnicas de análise de formas indicaram a viabilidade dessas metodologias na classificação das espécies, em particular, as redes complexas, a transformada de wavelets e a dimensão fractal multiescala que alcançaram altas taxas de classificações corretas. Os métodos desenvolvidos para análise de estruturas tubulares também demonstraram grande potencialidade na discriminação das espécies, principalmente a assinatura fractal multiescala a partir de pontos biométricos. As técnicas de análise de textura desenvolvidas também contribuíram para o estudo das espécies. Os resultados obtidos com as abordagens sinalizam que a relação entre biologia e computação é essencial para o desenvolvimento de metodologias eficientes. A inferência evolutiva das espécies foi um importante resultado obtido com os dados morfométricos, tanto a partir da forma, quanto da estrutura tubular e da textura. Testes estatísticos comprovaram a correlação entre os dados morfométricos obtidos por visão artificial e os dados moleculares de reconstrução filogenética. A multidisciplinaridade é o ponto central do trabalho, que está inserido na fronteira das áreas de visão artificial, morfometria e biologia. Com isso, essa simbiose resultou em promissoras contribuições para as áreas envolvidas
id USP_6576e2bf093df15ec7a38270a183d4d2
oai_identifier_str oai:teses.usp.br:tde-15042010-105936
network_acronym_str USP
network_name_str Biblioteca Digital de Teses e Dissertações da USP
repository_id_str 2721
spelling Visão artificial e morfometria na análise e classificação de espécies biológicasArtificial vision and morfometry in analysis and classification of biological speciesAnálise de imagensArtificial visionImage analysisMorfometriaMorphometryTaxonomiaTaxonomyVisão artificialA descoberta da história taxonômica e evolutiva das espécies é a principal fronteira das pesquisas científicas em diversas áreas do conhecimento. A biodiversidade dos indivíduos associada a grande variabilidade morfológica, torna essa tarefa um verdadeiro desafio. Os métodos tradicionais baseados na inspeção visual estão ultrapassados. Hoje em dia, os avanços tecnológicos têm colocado à disposição dos pesquisadores um arcabouço de ferramentas para o estudo das espécies. Este trabalho tem como objetivo investigar e desenvolver modelos computacionais capazes de analisar e classificar espécies biológicas por meio de características morfométricas. Para isso, técnicas de análise de imagens foram utilizadas para determinar a variabilidade das espécies em função de três informações de interesse: forma, estrutura tubular e textura. A potencialidade das metodologias foi avaliada por meio das seguintes espécies biológicas: maracujás silvestres do gênero Passiflora, eucaliptos do gênero Eucalyptus e arroz do gênero Oryza. Os experimentos produziram um conjunto de dados que representam uma detalhada descrição sobre a morfometria das espécies. Os resultados demonstraram que as técnicas de visão artificial são importantes para o estudo das espécies. As técnicas de análise de formas indicaram a viabilidade dessas metodologias na classificação das espécies, em particular, as redes complexas, a transformada de wavelets e a dimensão fractal multiescala que alcançaram altas taxas de classificações corretas. Os métodos desenvolvidos para análise de estruturas tubulares também demonstraram grande potencialidade na discriminação das espécies, principalmente a assinatura fractal multiescala a partir de pontos biométricos. As técnicas de análise de textura desenvolvidas também contribuíram para o estudo das espécies. Os resultados obtidos com as abordagens sinalizam que a relação entre biologia e computação é essencial para o desenvolvimento de metodologias eficientes. A inferência evolutiva das espécies foi um importante resultado obtido com os dados morfométricos, tanto a partir da forma, quanto da estrutura tubular e da textura. Testes estatísticos comprovaram a correlação entre os dados morfométricos obtidos por visão artificial e os dados moleculares de reconstrução filogenética. A multidisciplinaridade é o ponto central do trabalho, que está inserido na fronteira das áreas de visão artificial, morfometria e biologia. Com isso, essa simbiose resultou em promissoras contribuições para as áreas envolvidasThe discovery of taxonomic and evolutionary history of species is the main frontier of scientific research in various knowledge areas. The biodiversity of living things associated with the great morphological variability, makes this task a rightful challenge. The traditional methodologies based on visual inspection are totally outdated. Nowadays, technological advances have made available to researchers a framework of tools for the study of the species. This study aims to investigate and develop computer models to perform analysis and classification of biological species from morphometric features. For this, techniques of image analysis were used to determine the variability of the species in terms of three information of interest: shape, tubular structure and texture. The capability of the methods was evaluated by follows biological species: passion fruits of genus Passiflora, eucalyptus of genus Eucalyptus and rice of genus Oryza. The experiments produced a detailed dataset about the morphometric information of the species. The results showed that the techniques of artificial vision are demonstrably important to the study of the species. The shape analysis techniques indicated the viability of these methodologies in the species classification, in special the complex networks, the wavelets transform and the multiscale fractal dimension, have achieved high rates of correct discrimination. The new methods developed for analysis of tubular structures have also show great potential in species classification, especially the multiscale fractal signature from biometrics points. The techniques developed for texture analysis also show significant results in the investigation of the species. The results obtained with the approaches indicate that the relationship biology and computing is essential for the development of efficient methods. The inference of evolutionary tree of species was an important result obtained with the morphometric data collected from form, tubular structure and texture. Statistical tests showed a correlation between the morphometric data obtained by artificial vision and molecular data of phylogenetic reconstruction. A multidisciplinary approach is the focus of the work, which is related to the areas of artificial vision, morphometry and biology. Thus, this symbiosis has resulted in important contributions to the areas involvedBiblioteca Digitais de Teses e Dissertações da USPBruno, Odemir MartinezPlotze, Rodrigo de Oliveira2010-02-11info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfhttp://www.teses.usp.br/teses/disponiveis/55/55134/tde-15042010-105936/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesspor2016-07-28T16:10:05Zoai:teses.usp.br:tde-15042010-105936Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212016-07-28T16:10:05Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false
dc.title.none.fl_str_mv Visão artificial e morfometria na análise e classificação de espécies biológicas
Artificial vision and morfometry in analysis and classification of biological species
title Visão artificial e morfometria na análise e classificação de espécies biológicas
spellingShingle Visão artificial e morfometria na análise e classificação de espécies biológicas
Plotze, Rodrigo de Oliveira
Análise de imagens
Artificial vision
Image analysis
Morfometria
Morphometry
Taxonomia
Taxonomy
Visão artificial
title_short Visão artificial e morfometria na análise e classificação de espécies biológicas
title_full Visão artificial e morfometria na análise e classificação de espécies biológicas
title_fullStr Visão artificial e morfometria na análise e classificação de espécies biológicas
title_full_unstemmed Visão artificial e morfometria na análise e classificação de espécies biológicas
title_sort Visão artificial e morfometria na análise e classificação de espécies biológicas
author Plotze, Rodrigo de Oliveira
author_facet Plotze, Rodrigo de Oliveira
author_role author
dc.contributor.none.fl_str_mv Bruno, Odemir Martinez
dc.contributor.author.fl_str_mv Plotze, Rodrigo de Oliveira
dc.subject.por.fl_str_mv Análise de imagens
Artificial vision
Image analysis
Morfometria
Morphometry
Taxonomia
Taxonomy
Visão artificial
topic Análise de imagens
Artificial vision
Image analysis
Morfometria
Morphometry
Taxonomia
Taxonomy
Visão artificial
description A descoberta da história taxonômica e evolutiva das espécies é a principal fronteira das pesquisas científicas em diversas áreas do conhecimento. A biodiversidade dos indivíduos associada a grande variabilidade morfológica, torna essa tarefa um verdadeiro desafio. Os métodos tradicionais baseados na inspeção visual estão ultrapassados. Hoje em dia, os avanços tecnológicos têm colocado à disposição dos pesquisadores um arcabouço de ferramentas para o estudo das espécies. Este trabalho tem como objetivo investigar e desenvolver modelos computacionais capazes de analisar e classificar espécies biológicas por meio de características morfométricas. Para isso, técnicas de análise de imagens foram utilizadas para determinar a variabilidade das espécies em função de três informações de interesse: forma, estrutura tubular e textura. A potencialidade das metodologias foi avaliada por meio das seguintes espécies biológicas: maracujás silvestres do gênero Passiflora, eucaliptos do gênero Eucalyptus e arroz do gênero Oryza. Os experimentos produziram um conjunto de dados que representam uma detalhada descrição sobre a morfometria das espécies. Os resultados demonstraram que as técnicas de visão artificial são importantes para o estudo das espécies. As técnicas de análise de formas indicaram a viabilidade dessas metodologias na classificação das espécies, em particular, as redes complexas, a transformada de wavelets e a dimensão fractal multiescala que alcançaram altas taxas de classificações corretas. Os métodos desenvolvidos para análise de estruturas tubulares também demonstraram grande potencialidade na discriminação das espécies, principalmente a assinatura fractal multiescala a partir de pontos biométricos. As técnicas de análise de textura desenvolvidas também contribuíram para o estudo das espécies. Os resultados obtidos com as abordagens sinalizam que a relação entre biologia e computação é essencial para o desenvolvimento de metodologias eficientes. A inferência evolutiva das espécies foi um importante resultado obtido com os dados morfométricos, tanto a partir da forma, quanto da estrutura tubular e da textura. Testes estatísticos comprovaram a correlação entre os dados morfométricos obtidos por visão artificial e os dados moleculares de reconstrução filogenética. A multidisciplinaridade é o ponto central do trabalho, que está inserido na fronteira das áreas de visão artificial, morfometria e biologia. Com isso, essa simbiose resultou em promissoras contribuições para as áreas envolvidas
publishDate 2010
dc.date.none.fl_str_mv 2010-02-11
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://www.teses.usp.br/teses/disponiveis/55/55134/tde-15042010-105936/
url http://www.teses.usp.br/teses/disponiveis/55/55134/tde-15042010-105936/
dc.language.iso.fl_str_mv por
language por
dc.relation.none.fl_str_mv
dc.rights.driver.fl_str_mv Liberar o conteúdo para acesso público.
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Liberar o conteúdo para acesso público.
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.coverage.none.fl_str_mv
dc.publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
dc.source.none.fl_str_mv
reponame:Biblioteca Digital de Teses e Dissertações da USP
instname:Universidade de São Paulo (USP)
instacron:USP
instname_str Universidade de São Paulo (USP)
instacron_str USP
institution USP
reponame_str Biblioteca Digital de Teses e Dissertações da USP
collection Biblioteca Digital de Teses e Dissertações da USP
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)
repository.mail.fl_str_mv virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br
_version_ 1815257017885917184