Studies of stochastic thermodynamics with optical tweezers

Detalhes bibliográficos
Autor(a) principal: Kamizaki, Lucas Prado
Data de Publicação: 2022
Tipo de documento: Dissertação
Idioma: eng
Título da fonte: Biblioteca Digital de Teses e Dissertações da USP
Texto Completo: https://www.teses.usp.br/teses/disponiveis/76/76134/tde-13072022-121617/
Resumo: In the last thirty years, experimental and theoretical advancements allowed the investigation of the thermodynamics of small systems far from equilibrium. In 1998, Ken Sekimoto showed that work and heat can be associated with individual trajectories of a Brownian particle. In this context, work becomes a stochastic quantity with a probability distribution associated, respecting important relations as the Jarzynski equality. A paradigmatic study case in stochastic thermodynamics is the fluid-immersed particle trapped in a harmonic potential, a routinely achieved situation using optical tweezers. Using the light-matter interaction, optical tweezers can trap and control colloidal particles. Thus, optical tweezers are powerful and versatile tools when analyzing the thermodynamics of small systems. In this dissertation, we have simulated the dynamics of a colloidal particle trapped in an optical tweezer in different stochastic thermodynamic contexts. By simulating the experimental system, we can verify the feasibility and the adequate parameters to study stochastic thermodynamics in practice. The two main topics studied are optimization of protocols and information-to-energy conversion. Because the work probability density function depends on the protocol, different protocols have different average work values. Among all protocols with a certain intensity and duration, the one that stands out is the optimal protocol, i.e., the process that has the minimum average work. Generally, it is hard to find the optimal protocol analytically, and often other methods are necessary. The first main result is the numerical determination of the performance of the protocols found by approximate methods (for slowly varying processes and weak processes) for different protocol times and intensities. In addition to controlling the system through the protocol, information about its state allows Maxwells demon-like experiments. The second main result is that we propose a new feedback experiment, simplifying the ideas presented in previous works. By doing so, we were able to calculate the dependency of the information-to-energy conversion and the delay time analytically. The simplifications made allow the study of feedback experiments using our actual experimental capabilities.
id USP_6579b5046200cd2ff8a90560c788bceb
oai_identifier_str oai:teses.usp.br:tde-13072022-121617
network_acronym_str USP
network_name_str Biblioteca Digital de Teses e Dissertações da USP
repository_id_str 2721
spelling Studies of stochastic thermodynamics with optical tweezersEstudos de termodinâmica estocástica com pinças ópticasConversão informação-energiaFinite-time thermodynamicsInformation-to-energy conversionOptimal protocolsProtocolos ótimosTermodinâmica em tempo finitoIn the last thirty years, experimental and theoretical advancements allowed the investigation of the thermodynamics of small systems far from equilibrium. In 1998, Ken Sekimoto showed that work and heat can be associated with individual trajectories of a Brownian particle. In this context, work becomes a stochastic quantity with a probability distribution associated, respecting important relations as the Jarzynski equality. A paradigmatic study case in stochastic thermodynamics is the fluid-immersed particle trapped in a harmonic potential, a routinely achieved situation using optical tweezers. Using the light-matter interaction, optical tweezers can trap and control colloidal particles. Thus, optical tweezers are powerful and versatile tools when analyzing the thermodynamics of small systems. In this dissertation, we have simulated the dynamics of a colloidal particle trapped in an optical tweezer in different stochastic thermodynamic contexts. By simulating the experimental system, we can verify the feasibility and the adequate parameters to study stochastic thermodynamics in practice. The two main topics studied are optimization of protocols and information-to-energy conversion. Because the work probability density function depends on the protocol, different protocols have different average work values. Among all protocols with a certain intensity and duration, the one that stands out is the optimal protocol, i.e., the process that has the minimum average work. Generally, it is hard to find the optimal protocol analytically, and often other methods are necessary. The first main result is the numerical determination of the performance of the protocols found by approximate methods (for slowly varying processes and weak processes) for different protocol times and intensities. In addition to controlling the system through the protocol, information about its state allows Maxwells demon-like experiments. The second main result is that we propose a new feedback experiment, simplifying the ideas presented in previous works. By doing so, we were able to calculate the dependency of the information-to-energy conversion and the delay time analytically. The simplifications made allow the study of feedback experiments using our actual experimental capabilities.Nos últimos trinta anos, avanços experimentais e teóricos permitiram a investigação da termodinâmica de sistemas pequenos fora do equilíbrio. Em 1998, Ken Sekimoto mostrou que trabalho e calor podem ser associados a trajetórias individuais de uma partícula Browniana, e essas grandezas se tornam quantidade estocásticas com uma distribuições de probabilidade associadas. Um estudo de caso paradigmático em termodinâmica estocática é o de uma partícula imersa em um fluido e presa em um potencial harmônico, uma situação rotineiramente atingida com pinças ópticas. Usando as interações da luz com a matéria, pinças ópticas podem aprisionar e controlar partículas coloidais. Portanto, pinças ópticas são ferramentas poderasas e versáteis na análise da termodinâmica de sistemas pequenos. Nesta dissertação, nós simulamos a dinâmica de uma partícula coloidal aprisionada em uma pinça óptica em diferentes contextos da termodinâmica estocástica. Desta forma, nós pudemos verificar a viabilidade e os parâmetros adequados para realizar os experimentos na prática. Os dois principais tópicos estudados são de otimização de protocolos e a conversão informação-energia. Uma vez que a distribuição de probabilidade do trabalho depende do protocolo, diferentes protocolos terão valores médios para o trabalho distintos. Entre todos os protocolos, o nosso interesse esta no protocolo ótimo, isto é, o protocolo que possui o valor mínimo do trabalho médio. Geralmente é díficil encontrar expressões analíticas para o protocolo ótimo e, frequentemente, outros métodos são necessários. O primeiro resultado principal é que nós determinamos numericamente a performance de outros métodos (para processos lentos e para processos fracos) para diferentes tempos de protocolo e intensidades. Além do controle do sistema através do protocolo, a informação sobre o estado permite experimentos do tipo Demômio de Maxwell. O segundo resultado principal é a proposta de um novo experimento de feedback, simplificando as ideias apresentadas em trabalhos anteriores. Desta forma, nós conseguimos calcular a dependência da conversão informação-energia com o tempo de atraso. As simplificações feitas permitem o estudo de experimento de feedback com nossa capacidade experimental atual.Biblioteca Digitais de Teses e Dissertações da USPMuniz, Sérgio RicardoKamizaki, Lucas Prado2022-02-24info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttps://www.teses.usp.br/teses/disponiveis/76/76134/tde-13072022-121617/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesseng2024-08-22T23:34:03Zoai:teses.usp.br:tde-13072022-121617Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212024-08-22T23:34:03Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false
dc.title.none.fl_str_mv Studies of stochastic thermodynamics with optical tweezers
Estudos de termodinâmica estocástica com pinças ópticas
title Studies of stochastic thermodynamics with optical tweezers
spellingShingle Studies of stochastic thermodynamics with optical tweezers
Kamizaki, Lucas Prado
Conversão informação-energia
Finite-time thermodynamics
Information-to-energy conversion
Optimal protocols
Protocolos ótimos
Termodinâmica em tempo finito
title_short Studies of stochastic thermodynamics with optical tweezers
title_full Studies of stochastic thermodynamics with optical tweezers
title_fullStr Studies of stochastic thermodynamics with optical tweezers
title_full_unstemmed Studies of stochastic thermodynamics with optical tweezers
title_sort Studies of stochastic thermodynamics with optical tweezers
author Kamizaki, Lucas Prado
author_facet Kamizaki, Lucas Prado
author_role author
dc.contributor.none.fl_str_mv Muniz, Sérgio Ricardo
dc.contributor.author.fl_str_mv Kamizaki, Lucas Prado
dc.subject.por.fl_str_mv Conversão informação-energia
Finite-time thermodynamics
Information-to-energy conversion
Optimal protocols
Protocolos ótimos
Termodinâmica em tempo finito
topic Conversão informação-energia
Finite-time thermodynamics
Information-to-energy conversion
Optimal protocols
Protocolos ótimos
Termodinâmica em tempo finito
description In the last thirty years, experimental and theoretical advancements allowed the investigation of the thermodynamics of small systems far from equilibrium. In 1998, Ken Sekimoto showed that work and heat can be associated with individual trajectories of a Brownian particle. In this context, work becomes a stochastic quantity with a probability distribution associated, respecting important relations as the Jarzynski equality. A paradigmatic study case in stochastic thermodynamics is the fluid-immersed particle trapped in a harmonic potential, a routinely achieved situation using optical tweezers. Using the light-matter interaction, optical tweezers can trap and control colloidal particles. Thus, optical tweezers are powerful and versatile tools when analyzing the thermodynamics of small systems. In this dissertation, we have simulated the dynamics of a colloidal particle trapped in an optical tweezer in different stochastic thermodynamic contexts. By simulating the experimental system, we can verify the feasibility and the adequate parameters to study stochastic thermodynamics in practice. The two main topics studied are optimization of protocols and information-to-energy conversion. Because the work probability density function depends on the protocol, different protocols have different average work values. Among all protocols with a certain intensity and duration, the one that stands out is the optimal protocol, i.e., the process that has the minimum average work. Generally, it is hard to find the optimal protocol analytically, and often other methods are necessary. The first main result is the numerical determination of the performance of the protocols found by approximate methods (for slowly varying processes and weak processes) for different protocol times and intensities. In addition to controlling the system through the protocol, information about its state allows Maxwells demon-like experiments. The second main result is that we propose a new feedback experiment, simplifying the ideas presented in previous works. By doing so, we were able to calculate the dependency of the information-to-energy conversion and the delay time analytically. The simplifications made allow the study of feedback experiments using our actual experimental capabilities.
publishDate 2022
dc.date.none.fl_str_mv 2022-02-24
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://www.teses.usp.br/teses/disponiveis/76/76134/tde-13072022-121617/
url https://www.teses.usp.br/teses/disponiveis/76/76134/tde-13072022-121617/
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv
dc.rights.driver.fl_str_mv Liberar o conteúdo para acesso público.
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Liberar o conteúdo para acesso público.
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.coverage.none.fl_str_mv
dc.publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
dc.source.none.fl_str_mv
reponame:Biblioteca Digital de Teses e Dissertações da USP
instname:Universidade de São Paulo (USP)
instacron:USP
instname_str Universidade de São Paulo (USP)
instacron_str USP
institution USP
reponame_str Biblioteca Digital de Teses e Dissertações da USP
collection Biblioteca Digital de Teses e Dissertações da USP
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)
repository.mail.fl_str_mv virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br
_version_ 1809090683849408512