Inferência da satisfação de usuários em serviços públicos de acesso à informação utilizando aprendizado neural
Autor(a) principal: | |
---|---|
Data de Publicação: | 2020 |
Tipo de documento: | Dissertação |
Idioma: | por |
Título da fonte: | Biblioteca Digital de Teses e Dissertações da USP |
Texto Completo: | https://www.teses.usp.br/teses/disponiveis/100/100131/tde-16122020-192412/ |
Resumo: | Com a rápida expansão dos sistemas de tecnologia da informação (TI) em anos recentes, surge a oportunidade de aprimorar os serviços em diversos segmentos, entre eles, os prestados pelas instituições governamentais. Dentre estes diversos serviços, a disponibilização de informações públicas é um exemplo importante, pois por meio da Lei da Transparência juntamente com a Lei de Acesso à Informação, criaram um ambiente mais democrático no Brasil. Um operacionalizador do processo de transparência, é o Sistema Eletrônico do Serviço de Informação ao Cidadão (e-SIC), sendo que os dados provenientes desta plataforma constituem um córpus de especial interesse para o presente trabalho. A disponibilidade de textos rotulados com escores de satisfação deste sistema sugere a oportunidade de utilizar métodos de processamento de línguas naturais (PLN) para inferir de forma automática a satisfação de usuários, especialmente no que diz respeito ao uso de redes neurais que têm obtido resultados positivos em diversas tarefas da área. A partir desta observação, o presente trabalho apresenta os resultados de pesquisa em nível de mestrado no campo de PLN, no domínio da satisfação de usuários, com o objetivo geral de desenvolver modelos computacionais para avaliar a satisfação dos usuários de plataformas de solicitação de acesso à informação, por meio da utilização de técnicas baseadas em aprendizado neural. |
id |
USP_667c3bde0d4c16f1f5daafc66cdfe0b2 |
---|---|
oai_identifier_str |
oai:teses.usp.br:tde-16122020-192412 |
network_acronym_str |
USP |
network_name_str |
Biblioteca Digital de Teses e Dissertações da USP |
repository_id_str |
2721 |
spelling |
Inferência da satisfação de usuários em serviços públicos de acesso à informação utilizando aprendizado neuralUser satisfaction inference in public services of information access using neural learningAprendizado de máquinaAprendizado neuralBERTBERTELMoELMoLSTMLSTMMachine LearningNatural Language ProcessingNeural LearningNLPPLNProcessamento de língua naturalSatisfação do usuárioUser SatisfactionCom a rápida expansão dos sistemas de tecnologia da informação (TI) em anos recentes, surge a oportunidade de aprimorar os serviços em diversos segmentos, entre eles, os prestados pelas instituições governamentais. Dentre estes diversos serviços, a disponibilização de informações públicas é um exemplo importante, pois por meio da Lei da Transparência juntamente com a Lei de Acesso à Informação, criaram um ambiente mais democrático no Brasil. Um operacionalizador do processo de transparência, é o Sistema Eletrônico do Serviço de Informação ao Cidadão (e-SIC), sendo que os dados provenientes desta plataforma constituem um córpus de especial interesse para o presente trabalho. A disponibilidade de textos rotulados com escores de satisfação deste sistema sugere a oportunidade de utilizar métodos de processamento de línguas naturais (PLN) para inferir de forma automática a satisfação de usuários, especialmente no que diz respeito ao uso de redes neurais que têm obtido resultados positivos em diversas tarefas da área. A partir desta observação, o presente trabalho apresenta os resultados de pesquisa em nível de mestrado no campo de PLN, no domínio da satisfação de usuários, com o objetivo geral de desenvolver modelos computacionais para avaliar a satisfação dos usuários de plataformas de solicitação de acesso à informação, por meio da utilização de técnicas baseadas em aprendizado neural.Given the fast expansion of information technology (IT) systems in recent years, there is the opportunity to improve services in several segments, including those provided by government institutions. Among these services, the provision of public information is an important example, as through the Transparency Law and the Access to Information Law created a more democratic environment in Brazil. An outcome of the transparency process is the Electronic System for Citizen Information Service (e-SIC), and the data from this platform constitute a corpus of special interest for the present work. The availability of labeled texts with satisfaction scores suggests the opportunity to use natural language processing (NLP) methods to automatically infer user satisfaction, especially with regard to the use of Neural Networks that have obtained positive results in several tasks in the field. Given this opportunity, the current work presents a Msc research project in the NLP field, in the domain of user satisfaction, with the goal of developing computational models to evaluate the satisfaction of users of request information access platforms through the use of techniques based on neural learning.Biblioteca Digitais de Teses e Dissertações da USPParaboni, IvandreFlores, Arthur Marçal2020-11-03info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttps://www.teses.usp.br/teses/disponiveis/100/100131/tde-16122020-192412/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesspor2024-10-09T13:16:04Zoai:teses.usp.br:tde-16122020-192412Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212024-10-09T13:16:04Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false |
dc.title.none.fl_str_mv |
Inferência da satisfação de usuários em serviços públicos de acesso à informação utilizando aprendizado neural User satisfaction inference in public services of information access using neural learning |
title |
Inferência da satisfação de usuários em serviços públicos de acesso à informação utilizando aprendizado neural |
spellingShingle |
Inferência da satisfação de usuários em serviços públicos de acesso à informação utilizando aprendizado neural Flores, Arthur Marçal Aprendizado de máquina Aprendizado neural BERT BERT ELMo ELMo LSTM LSTM Machine Learning Natural Language Processing Neural Learning NLP PLN Processamento de língua natural Satisfação do usuário User Satisfaction |
title_short |
Inferência da satisfação de usuários em serviços públicos de acesso à informação utilizando aprendizado neural |
title_full |
Inferência da satisfação de usuários em serviços públicos de acesso à informação utilizando aprendizado neural |
title_fullStr |
Inferência da satisfação de usuários em serviços públicos de acesso à informação utilizando aprendizado neural |
title_full_unstemmed |
Inferência da satisfação de usuários em serviços públicos de acesso à informação utilizando aprendizado neural |
title_sort |
Inferência da satisfação de usuários em serviços públicos de acesso à informação utilizando aprendizado neural |
author |
Flores, Arthur Marçal |
author_facet |
Flores, Arthur Marçal |
author_role |
author |
dc.contributor.none.fl_str_mv |
Paraboni, Ivandre |
dc.contributor.author.fl_str_mv |
Flores, Arthur Marçal |
dc.subject.por.fl_str_mv |
Aprendizado de máquina Aprendizado neural BERT BERT ELMo ELMo LSTM LSTM Machine Learning Natural Language Processing Neural Learning NLP PLN Processamento de língua natural Satisfação do usuário User Satisfaction |
topic |
Aprendizado de máquina Aprendizado neural BERT BERT ELMo ELMo LSTM LSTM Machine Learning Natural Language Processing Neural Learning NLP PLN Processamento de língua natural Satisfação do usuário User Satisfaction |
description |
Com a rápida expansão dos sistemas de tecnologia da informação (TI) em anos recentes, surge a oportunidade de aprimorar os serviços em diversos segmentos, entre eles, os prestados pelas instituições governamentais. Dentre estes diversos serviços, a disponibilização de informações públicas é um exemplo importante, pois por meio da Lei da Transparência juntamente com a Lei de Acesso à Informação, criaram um ambiente mais democrático no Brasil. Um operacionalizador do processo de transparência, é o Sistema Eletrônico do Serviço de Informação ao Cidadão (e-SIC), sendo que os dados provenientes desta plataforma constituem um córpus de especial interesse para o presente trabalho. A disponibilidade de textos rotulados com escores de satisfação deste sistema sugere a oportunidade de utilizar métodos de processamento de línguas naturais (PLN) para inferir de forma automática a satisfação de usuários, especialmente no que diz respeito ao uso de redes neurais que têm obtido resultados positivos em diversas tarefas da área. A partir desta observação, o presente trabalho apresenta os resultados de pesquisa em nível de mestrado no campo de PLN, no domínio da satisfação de usuários, com o objetivo geral de desenvolver modelos computacionais para avaliar a satisfação dos usuários de plataformas de solicitação de acesso à informação, por meio da utilização de técnicas baseadas em aprendizado neural. |
publishDate |
2020 |
dc.date.none.fl_str_mv |
2020-11-03 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://www.teses.usp.br/teses/disponiveis/100/100131/tde-16122020-192412/ |
url |
https://www.teses.usp.br/teses/disponiveis/100/100131/tde-16122020-192412/ |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.relation.none.fl_str_mv |
|
dc.rights.driver.fl_str_mv |
Liberar o conteúdo para acesso público. info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Liberar o conteúdo para acesso público. |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.coverage.none.fl_str_mv |
|
dc.publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações da USP instname:Universidade de São Paulo (USP) instacron:USP |
instname_str |
Universidade de São Paulo (USP) |
instacron_str |
USP |
institution |
USP |
reponame_str |
Biblioteca Digital de Teses e Dissertações da USP |
collection |
Biblioteca Digital de Teses e Dissertações da USP |
repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP) |
repository.mail.fl_str_mv |
virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br |
_version_ |
1815256513667661824 |