Integrability and geometry of quadratic differential systems with invariant hyperbolas
Autor(a) principal: | |
---|---|
Data de Publicação: | 2021 |
Tipo de documento: | Tese |
Idioma: | eng |
Título da fonte: | Biblioteca Digital de Teses e Dissertações da USP |
Texto Completo: | https://www.teses.usp.br/teses/disponiveis/55/55135/tde-24032021-122959/ |
Resumo: | Planar polynomial differential systems occur very often in various branches of applied mathematics, in modeling natural phenomena, in astrophysics, in the equations of continuity describing the interactions of ions, electrons and neutral species in plasma physics, among other situations. Such differential systems have also theoretical importance. Several problems stated more than one hundred years ago on polynomial differential systems are still open, for instance, the second part of Hilberts 16th problem stated by Hilbert in (HILBERT, 1902), the problem of algebraic integrability stated by Poincaré in (POINCARÉ, 1891a), (POINCARÉ, 1891b), problems on integrability resulting from the work of Darboux (DARBOUX, 1878) and the problem of the center also stated by Poincaré (POINCARÉ, 1885). They are still unsolved, except for the problem of the center solved only in the quadratic case. In this thesis we denote by QSH be the whole class of non-degenerate planar quadratic differential systems possessing at least one invariant hyperbola. QSH is a rich family of systems displaying various kinds of integrability: polynomial, algebraic (rational), Darboux, generalized Darboux, Liouvillian. The goal of this investigation is to study this class from the viewpoint of the theory of Darboux: To separate the integrable system in QSH, to classify them according to the kind of first integral they possess and study their geometry. Our main motivation and goal, apart from gathering data, is to study the relationship between integrability and the geometry of the systems as expressed in their configurations of invariant algebraic curves, to study the bifurcations of their configurations as well as their relations with the bifurcations of the phase portraits. |
id |
USP_66a2ce3a9ce471a03fd573210232b548 |
---|---|
oai_identifier_str |
oai:teses.usp.br:tde-24032021-122959 |
network_acronym_str |
USP |
network_name_str |
Biblioteca Digital de Teses e Dissertações da USP |
repository_id_str |
2721 |
spelling |
Integrability and geometry of quadratic differential systems with invariant hyperbolasIntegrabilidade e geometria de sistemas diferenciais quadráticos com hipérboles invariantesBifurcação de configuraçõesBifurcação de singularidadesBifurcation of configurationsBifurcation of singularitiesConfiguração das curvas algébricas invariantesConfiguration of invariant algebraic curvesCurva algébrica invarianteDarboux integrabilityHipérbole invarianteIntegrabilidade de DarbouxIntegrabilidade LiouviliannaInvariant algebraic curveInvariant hyperbolaLiouvillian integrabilityQuadratic differential systemSingularidadeSingularitySistema diferencial quadráticoPlanar polynomial differential systems occur very often in various branches of applied mathematics, in modeling natural phenomena, in astrophysics, in the equations of continuity describing the interactions of ions, electrons and neutral species in plasma physics, among other situations. Such differential systems have also theoretical importance. Several problems stated more than one hundred years ago on polynomial differential systems are still open, for instance, the second part of Hilberts 16th problem stated by Hilbert in (HILBERT, 1902), the problem of algebraic integrability stated by Poincaré in (POINCARÉ, 1891a), (POINCARÉ, 1891b), problems on integrability resulting from the work of Darboux (DARBOUX, 1878) and the problem of the center also stated by Poincaré (POINCARÉ, 1885). They are still unsolved, except for the problem of the center solved only in the quadratic case. In this thesis we denote by QSH be the whole class of non-degenerate planar quadratic differential systems possessing at least one invariant hyperbola. QSH is a rich family of systems displaying various kinds of integrability: polynomial, algebraic (rational), Darboux, generalized Darboux, Liouvillian. The goal of this investigation is to study this class from the viewpoint of the theory of Darboux: To separate the integrable system in QSH, to classify them according to the kind of first integral they possess and study their geometry. Our main motivation and goal, apart from gathering data, is to study the relationship between integrability and the geometry of the systems as expressed in their configurations of invariant algebraic curves, to study the bifurcations of their configurations as well as their relations with the bifurcations of the phase portraits.Os sistemas diferenciais polinômiais planares ocorrem com muita frequência em vários ramos da matemática aplicada, na modelagem de fenômenos naturais, na astrofísica, nas equações de continuidade que descrevem as interações de íons, elétrons e espécies neutras na física de plasma, entre outras situações. Tais sistemas diferenciais também têm importância teórica. Vários problemas expostos a mais de cem anos atrás em sistemas diferenciais polinomiais ainda estão em aberto, por exemplo, a segunda parte do 16º problema de Hilbert relatado por Hilbert em (HILBERT, 1902), o problema de integrabilidade algébrica relatado por Poincaré (POINCARÉ, 1891a), (POINCARÉ, 1891b), problemas de integrabilidade resultantes do trabalho de Darboux (DARBOUX, 1878) e o problema do centro também relatado por Poincaré (POINCARÉ, 1885). Estes problemas ainda estão em aberto, exceto pelo problema do centro que foi resolvido no caso quadrático. Nesta tese, denotamos por QSH toda a classe de sistemas diferenciais quadráticos planares não degenerados que possuem pelo menos uma hipérbole invariante. QSH é uma rica família de sistemas que exibem vários tipos de integrabilidade: polinomial, algébrica (racional), Darboux, Darboux generalizado e Liouvilliana. O objetivo desta investigação é estudar esta classe do ponto de vista da teoria de Darboux: Separar os sistemas integráveis em QSH, classificá-los de acordo com o tipo de integral primeira que eles possuem e estudar sua geometria. Nossa principal motivação e objetivo, além de coletar dados, é estudar a relação entre a integrabilidade e a geometria dos sistemas expressa em suas configurações das curvas algébricas invariantes, estudar as bifurcações de suas configurações, bem como suas relações com as bifurcações dos retratos de fase.Biblioteca Digitais de Teses e Dissertações da USPOliveira, Regilene Delazari dos SantosSchlomiuk, DanaTravaglini, Ana Maria2021-03-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfhttps://www.teses.usp.br/teses/disponiveis/55/55135/tde-24032021-122959/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesseng2021-03-24T18:38:02Zoai:teses.usp.br:tde-24032021-122959Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212021-03-24T18:38:02Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false |
dc.title.none.fl_str_mv |
Integrability and geometry of quadratic differential systems with invariant hyperbolas Integrabilidade e geometria de sistemas diferenciais quadráticos com hipérboles invariantes |
title |
Integrability and geometry of quadratic differential systems with invariant hyperbolas |
spellingShingle |
Integrability and geometry of quadratic differential systems with invariant hyperbolas Travaglini, Ana Maria Bifurcação de configurações Bifurcação de singularidades Bifurcation of configurations Bifurcation of singularities Configuração das curvas algébricas invariantes Configuration of invariant algebraic curves Curva algébrica invariante Darboux integrability Hipérbole invariante Integrabilidade de Darboux Integrabilidade Liouvilianna Invariant algebraic curve Invariant hyperbola Liouvillian integrability Quadratic differential system Singularidade Singularity Sistema diferencial quadrático |
title_short |
Integrability and geometry of quadratic differential systems with invariant hyperbolas |
title_full |
Integrability and geometry of quadratic differential systems with invariant hyperbolas |
title_fullStr |
Integrability and geometry of quadratic differential systems with invariant hyperbolas |
title_full_unstemmed |
Integrability and geometry of quadratic differential systems with invariant hyperbolas |
title_sort |
Integrability and geometry of quadratic differential systems with invariant hyperbolas |
author |
Travaglini, Ana Maria |
author_facet |
Travaglini, Ana Maria |
author_role |
author |
dc.contributor.none.fl_str_mv |
Oliveira, Regilene Delazari dos Santos Schlomiuk, Dana |
dc.contributor.author.fl_str_mv |
Travaglini, Ana Maria |
dc.subject.por.fl_str_mv |
Bifurcação de configurações Bifurcação de singularidades Bifurcation of configurations Bifurcation of singularities Configuração das curvas algébricas invariantes Configuration of invariant algebraic curves Curva algébrica invariante Darboux integrability Hipérbole invariante Integrabilidade de Darboux Integrabilidade Liouvilianna Invariant algebraic curve Invariant hyperbola Liouvillian integrability Quadratic differential system Singularidade Singularity Sistema diferencial quadrático |
topic |
Bifurcação de configurações Bifurcação de singularidades Bifurcation of configurations Bifurcation of singularities Configuração das curvas algébricas invariantes Configuration of invariant algebraic curves Curva algébrica invariante Darboux integrability Hipérbole invariante Integrabilidade de Darboux Integrabilidade Liouvilianna Invariant algebraic curve Invariant hyperbola Liouvillian integrability Quadratic differential system Singularidade Singularity Sistema diferencial quadrático |
description |
Planar polynomial differential systems occur very often in various branches of applied mathematics, in modeling natural phenomena, in astrophysics, in the equations of continuity describing the interactions of ions, electrons and neutral species in plasma physics, among other situations. Such differential systems have also theoretical importance. Several problems stated more than one hundred years ago on polynomial differential systems are still open, for instance, the second part of Hilberts 16th problem stated by Hilbert in (HILBERT, 1902), the problem of algebraic integrability stated by Poincaré in (POINCARÉ, 1891a), (POINCARÉ, 1891b), problems on integrability resulting from the work of Darboux (DARBOUX, 1878) and the problem of the center also stated by Poincaré (POINCARÉ, 1885). They are still unsolved, except for the problem of the center solved only in the quadratic case. In this thesis we denote by QSH be the whole class of non-degenerate planar quadratic differential systems possessing at least one invariant hyperbola. QSH is a rich family of systems displaying various kinds of integrability: polynomial, algebraic (rational), Darboux, generalized Darboux, Liouvillian. The goal of this investigation is to study this class from the viewpoint of the theory of Darboux: To separate the integrable system in QSH, to classify them according to the kind of first integral they possess and study their geometry. Our main motivation and goal, apart from gathering data, is to study the relationship between integrability and the geometry of the systems as expressed in their configurations of invariant algebraic curves, to study the bifurcations of their configurations as well as their relations with the bifurcations of the phase portraits. |
publishDate |
2021 |
dc.date.none.fl_str_mv |
2021-03-01 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
format |
doctoralThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://www.teses.usp.br/teses/disponiveis/55/55135/tde-24032021-122959/ |
url |
https://www.teses.usp.br/teses/disponiveis/55/55135/tde-24032021-122959/ |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
|
dc.rights.driver.fl_str_mv |
Liberar o conteúdo para acesso público. info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Liberar o conteúdo para acesso público. |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.coverage.none.fl_str_mv |
|
dc.publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações da USP instname:Universidade de São Paulo (USP) instacron:USP |
instname_str |
Universidade de São Paulo (USP) |
instacron_str |
USP |
institution |
USP |
reponame_str |
Biblioteca Digital de Teses e Dissertações da USP |
collection |
Biblioteca Digital de Teses e Dissertações da USP |
repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP) |
repository.mail.fl_str_mv |
virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br |
_version_ |
1815257300004241408 |