Integrability and geometry of quadratic differential systems with invariant hyperbolas

Detalhes bibliográficos
Autor(a) principal: Travaglini, Ana Maria
Data de Publicação: 2021
Tipo de documento: Tese
Idioma: eng
Título da fonte: Biblioteca Digital de Teses e Dissertações da USP
Texto Completo: https://www.teses.usp.br/teses/disponiveis/55/55135/tde-24032021-122959/
Resumo: Planar polynomial differential systems occur very often in various branches of applied mathematics, in modeling natural phenomena, in astrophysics, in the equations of continuity describing the interactions of ions, electrons and neutral species in plasma physics, among other situations. Such differential systems have also theoretical importance. Several problems stated more than one hundred years ago on polynomial differential systems are still open, for instance, the second part of Hilberts 16th problem stated by Hilbert in (HILBERT, 1902), the problem of algebraic integrability stated by Poincaré in (POINCARÉ, 1891a), (POINCARÉ, 1891b), problems on integrability resulting from the work of Darboux (DARBOUX, 1878) and the problem of the center also stated by Poincaré (POINCARÉ, 1885). They are still unsolved, except for the problem of the center solved only in the quadratic case. In this thesis we denote by QSH be the whole class of non-degenerate planar quadratic differential systems possessing at least one invariant hyperbola. QSH is a rich family of systems displaying various kinds of integrability: polynomial, algebraic (rational), Darboux, generalized Darboux, Liouvillian. The goal of this investigation is to study this class from the viewpoint of the theory of Darboux: To separate the integrable system in QSH, to classify them according to the kind of first integral they possess and study their geometry. Our main motivation and goal, apart from gathering data, is to study the relationship between integrability and the geometry of the systems as expressed in their configurations of invariant algebraic curves, to study the bifurcations of their configurations as well as their relations with the bifurcations of the phase portraits.
id USP_66a2ce3a9ce471a03fd573210232b548
oai_identifier_str oai:teses.usp.br:tde-24032021-122959
network_acronym_str USP
network_name_str Biblioteca Digital de Teses e Dissertações da USP
repository_id_str 2721
spelling Integrability and geometry of quadratic differential systems with invariant hyperbolasIntegrabilidade e geometria de sistemas diferenciais quadráticos com hipérboles invariantesBifurcação de configuraçõesBifurcação de singularidadesBifurcation of configurationsBifurcation of singularitiesConfiguração das curvas algébricas invariantesConfiguration of invariant algebraic curvesCurva algébrica invarianteDarboux integrabilityHipérbole invarianteIntegrabilidade de DarbouxIntegrabilidade LiouviliannaInvariant algebraic curveInvariant hyperbolaLiouvillian integrabilityQuadratic differential systemSingularidadeSingularitySistema diferencial quadráticoPlanar polynomial differential systems occur very often in various branches of applied mathematics, in modeling natural phenomena, in astrophysics, in the equations of continuity describing the interactions of ions, electrons and neutral species in plasma physics, among other situations. Such differential systems have also theoretical importance. Several problems stated more than one hundred years ago on polynomial differential systems are still open, for instance, the second part of Hilberts 16th problem stated by Hilbert in (HILBERT, 1902), the problem of algebraic integrability stated by Poincaré in (POINCARÉ, 1891a), (POINCARÉ, 1891b), problems on integrability resulting from the work of Darboux (DARBOUX, 1878) and the problem of the center also stated by Poincaré (POINCARÉ, 1885). They are still unsolved, except for the problem of the center solved only in the quadratic case. In this thesis we denote by QSH be the whole class of non-degenerate planar quadratic differential systems possessing at least one invariant hyperbola. QSH is a rich family of systems displaying various kinds of integrability: polynomial, algebraic (rational), Darboux, generalized Darboux, Liouvillian. The goal of this investigation is to study this class from the viewpoint of the theory of Darboux: To separate the integrable system in QSH, to classify them according to the kind of first integral they possess and study their geometry. Our main motivation and goal, apart from gathering data, is to study the relationship between integrability and the geometry of the systems as expressed in their configurations of invariant algebraic curves, to study the bifurcations of their configurations as well as their relations with the bifurcations of the phase portraits.Os sistemas diferenciais polinômiais planares ocorrem com muita frequência em vários ramos da matemática aplicada, na modelagem de fenômenos naturais, na astrofísica, nas equações de continuidade que descrevem as interações de íons, elétrons e espécies neutras na física de plasma, entre outras situações. Tais sistemas diferenciais também têm importância teórica. Vários problemas expostos a mais de cem anos atrás em sistemas diferenciais polinomiais ainda estão em aberto, por exemplo, a segunda parte do 16º problema de Hilbert relatado por Hilbert em (HILBERT, 1902), o problema de integrabilidade algébrica relatado por Poincaré (POINCARÉ, 1891a), (POINCARÉ, 1891b), problemas de integrabilidade resultantes do trabalho de Darboux (DARBOUX, 1878) e o problema do centro também relatado por Poincaré (POINCARÉ, 1885). Estes problemas ainda estão em aberto, exceto pelo problema do centro que foi resolvido no caso quadrático. Nesta tese, denotamos por QSH toda a classe de sistemas diferenciais quadráticos planares não degenerados que possuem pelo menos uma hipérbole invariante. QSH é uma rica família de sistemas que exibem vários tipos de integrabilidade: polinomial, algébrica (racional), Darboux, Darboux generalizado e Liouvilliana. O objetivo desta investigação é estudar esta classe do ponto de vista da teoria de Darboux: Separar os sistemas integráveis em QSH, classificá-los de acordo com o tipo de integral primeira que eles possuem e estudar sua geometria. Nossa principal motivação e objetivo, além de coletar dados, é estudar a relação entre a integrabilidade e a geometria dos sistemas expressa em suas configurações das curvas algébricas invariantes, estudar as bifurcações de suas configurações, bem como suas relações com as bifurcações dos retratos de fase.Biblioteca Digitais de Teses e Dissertações da USPOliveira, Regilene Delazari dos SantosSchlomiuk, DanaTravaglini, Ana Maria2021-03-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfhttps://www.teses.usp.br/teses/disponiveis/55/55135/tde-24032021-122959/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesseng2021-03-24T18:38:02Zoai:teses.usp.br:tde-24032021-122959Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212021-03-24T18:38:02Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false
dc.title.none.fl_str_mv Integrability and geometry of quadratic differential systems with invariant hyperbolas
Integrabilidade e geometria de sistemas diferenciais quadráticos com hipérboles invariantes
title Integrability and geometry of quadratic differential systems with invariant hyperbolas
spellingShingle Integrability and geometry of quadratic differential systems with invariant hyperbolas
Travaglini, Ana Maria
Bifurcação de configurações
Bifurcação de singularidades
Bifurcation of configurations
Bifurcation of singularities
Configuração das curvas algébricas invariantes
Configuration of invariant algebraic curves
Curva algébrica invariante
Darboux integrability
Hipérbole invariante
Integrabilidade de Darboux
Integrabilidade Liouvilianna
Invariant algebraic curve
Invariant hyperbola
Liouvillian integrability
Quadratic differential system
Singularidade
Singularity
Sistema diferencial quadrático
title_short Integrability and geometry of quadratic differential systems with invariant hyperbolas
title_full Integrability and geometry of quadratic differential systems with invariant hyperbolas
title_fullStr Integrability and geometry of quadratic differential systems with invariant hyperbolas
title_full_unstemmed Integrability and geometry of quadratic differential systems with invariant hyperbolas
title_sort Integrability and geometry of quadratic differential systems with invariant hyperbolas
author Travaglini, Ana Maria
author_facet Travaglini, Ana Maria
author_role author
dc.contributor.none.fl_str_mv Oliveira, Regilene Delazari dos Santos
Schlomiuk, Dana
dc.contributor.author.fl_str_mv Travaglini, Ana Maria
dc.subject.por.fl_str_mv Bifurcação de configurações
Bifurcação de singularidades
Bifurcation of configurations
Bifurcation of singularities
Configuração das curvas algébricas invariantes
Configuration of invariant algebraic curves
Curva algébrica invariante
Darboux integrability
Hipérbole invariante
Integrabilidade de Darboux
Integrabilidade Liouvilianna
Invariant algebraic curve
Invariant hyperbola
Liouvillian integrability
Quadratic differential system
Singularidade
Singularity
Sistema diferencial quadrático
topic Bifurcação de configurações
Bifurcação de singularidades
Bifurcation of configurations
Bifurcation of singularities
Configuração das curvas algébricas invariantes
Configuration of invariant algebraic curves
Curva algébrica invariante
Darboux integrability
Hipérbole invariante
Integrabilidade de Darboux
Integrabilidade Liouvilianna
Invariant algebraic curve
Invariant hyperbola
Liouvillian integrability
Quadratic differential system
Singularidade
Singularity
Sistema diferencial quadrático
description Planar polynomial differential systems occur very often in various branches of applied mathematics, in modeling natural phenomena, in astrophysics, in the equations of continuity describing the interactions of ions, electrons and neutral species in plasma physics, among other situations. Such differential systems have also theoretical importance. Several problems stated more than one hundred years ago on polynomial differential systems are still open, for instance, the second part of Hilberts 16th problem stated by Hilbert in (HILBERT, 1902), the problem of algebraic integrability stated by Poincaré in (POINCARÉ, 1891a), (POINCARÉ, 1891b), problems on integrability resulting from the work of Darboux (DARBOUX, 1878) and the problem of the center also stated by Poincaré (POINCARÉ, 1885). They are still unsolved, except for the problem of the center solved only in the quadratic case. In this thesis we denote by QSH be the whole class of non-degenerate planar quadratic differential systems possessing at least one invariant hyperbola. QSH is a rich family of systems displaying various kinds of integrability: polynomial, algebraic (rational), Darboux, generalized Darboux, Liouvillian. The goal of this investigation is to study this class from the viewpoint of the theory of Darboux: To separate the integrable system in QSH, to classify them according to the kind of first integral they possess and study their geometry. Our main motivation and goal, apart from gathering data, is to study the relationship between integrability and the geometry of the systems as expressed in their configurations of invariant algebraic curves, to study the bifurcations of their configurations as well as their relations with the bifurcations of the phase portraits.
publishDate 2021
dc.date.none.fl_str_mv 2021-03-01
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://www.teses.usp.br/teses/disponiveis/55/55135/tde-24032021-122959/
url https://www.teses.usp.br/teses/disponiveis/55/55135/tde-24032021-122959/
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv
dc.rights.driver.fl_str_mv Liberar o conteúdo para acesso público.
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Liberar o conteúdo para acesso público.
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.coverage.none.fl_str_mv
dc.publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
dc.source.none.fl_str_mv
reponame:Biblioteca Digital de Teses e Dissertações da USP
instname:Universidade de São Paulo (USP)
instacron:USP
instname_str Universidade de São Paulo (USP)
instacron_str USP
institution USP
reponame_str Biblioteca Digital de Teses e Dissertações da USP
collection Biblioteca Digital de Teses e Dissertações da USP
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)
repository.mail.fl_str_mv virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br
_version_ 1815257300004241408