Topology optimization of compressible flows using a discrete adjoint approach.
Autor(a) principal: | |
---|---|
Data de Publicação: | 2022 |
Tipo de documento: | Tese |
Idioma: | eng |
Título da fonte: | Biblioteca Digital de Teses e Dissertações da USP |
Texto Completo: | https://www.teses.usp.br/teses/disponiveis/3/3152/tde-08122022-144128/ |
Resumo: | In this work the Topology Optimization Method is employed to generate designs with rotating compressible flows. The Navier Stokes and energy equations are solved for steady state cases. The perfect gas model is used. The Brinkman penalization is applied to represent the solid regions inside the domain. The physical model is represented in a rotating reference frame and, to account for turbulent flows, the Favre average is used with the Wray Agarwal turbulence model from 2018. The main objective of the work is to optimize designs with compressible rotating flows, however incompressible and non-rotating cases have also been accounted. The objective functions considered for incompressible flows are the energy dissipation and the pump efficiency and, for compressible flow problems, the entropy variation and the impeller isentropic efficiency. The calculation of the sensitivities for the optimization problem is executed with the adjoint method in the continuous and the discrete approaches. The discrete approach developed is a novel methodology and is based on a finite differences scheme. The implementation is made with the use of the finite volume library OpenFOAM, the C++ library Eigen and the scientific library PETSc. Numerical examples are presented considering incompressible laminar flows with and without rotation, compressible laminar flows with and without rotation and compressible turbulent flows with and without rotation. Also, an assessment of the behavior of the turbulence model in an optimization context is performed. The numerical examples show that the sensitivity calculation is correctly implemented and the methodology developed is capable of generating designs to work with compressible rotating flows. |
id |
USP_66dc1ebdabb5cf882b2c98da1b456415 |
---|---|
oai_identifier_str |
oai:teses.usp.br:tde-08122022-144128 |
network_acronym_str |
USP |
network_name_str |
Biblioteca Digital de Teses e Dissertações da USP |
repository_id_str |
2721 |
spelling |
Topology optimization of compressible flows using a discrete adjoint approach.Otimização topológica de escoamentos compressíveis usando uma abordagem de adjunto discreto.Compressible flowDiscrete adjoint methodEscoamento compressívelEscoamento rotativoFinite volume methodMétodo adjunto discretoMétodo dos volumes finitosOtimização topológicaRotating flowTopology optimizationIn this work the Topology Optimization Method is employed to generate designs with rotating compressible flows. The Navier Stokes and energy equations are solved for steady state cases. The perfect gas model is used. The Brinkman penalization is applied to represent the solid regions inside the domain. The physical model is represented in a rotating reference frame and, to account for turbulent flows, the Favre average is used with the Wray Agarwal turbulence model from 2018. The main objective of the work is to optimize designs with compressible rotating flows, however incompressible and non-rotating cases have also been accounted. The objective functions considered for incompressible flows are the energy dissipation and the pump efficiency and, for compressible flow problems, the entropy variation and the impeller isentropic efficiency. The calculation of the sensitivities for the optimization problem is executed with the adjoint method in the continuous and the discrete approaches. The discrete approach developed is a novel methodology and is based on a finite differences scheme. The implementation is made with the use of the finite volume library OpenFOAM, the C++ library Eigen and the scientific library PETSc. Numerical examples are presented considering incompressible laminar flows with and without rotation, compressible laminar flows with and without rotation and compressible turbulent flows with and without rotation. Also, an assessment of the behavior of the turbulence model in an optimization context is performed. The numerical examples show that the sensitivity calculation is correctly implemented and the methodology developed is capable of generating designs to work with compressible rotating flows.Neste trabalho, o Método de Otimização Topológica é empregado para gerar projetos capazes de trabalhar com escoamentos compressíveis e rotativos. As equações de Navier Stokes e da energia são resolvidas para casos a regime permanente. O modelo de gás perfeito é utilizado. A penalização de Brinkman é aplicada para representar sólidos dentro do domínio de projeto. Os modelos são representados em um sistema de coordenadas rotativo e, quando a turbulência é considerada, a média de Favre é utilizada em conjunto com o modelo de turbulência de Wray Agarwal de 2018. O objetivo principal do trabalho é otimizar projetos para trabalhar com escoamentos compressíveis e rotativos, no entanto, escoamentos incompressíveis e sem rotação também foram abordados. As funções objetivo consideradas para os escoamentos incompressíveis são a dissipação de energia e a eficiência de bomba e, para escoamentos compressíveis, a variação de entropia e a eficiência isentrópica. O cálculo de sensibilidades para o problema de otimização é feito através do método adjunto nas suas abordagens contínua e discreta. A abordagem discreta desenvolvida é uma nova metodologia proposta e que se apoia em um esquema de diferenças finitas. A implementação numérica é feita com a biblioteca de volumes finitos OpenFOAM, a biblioteca de C++ Eigen e a biblioteca científica PETSc. Exemplos numéricos são apresentados considerando escoamentos incompressíveis laminares com e sem rotação, escoamentos compressíveis laminares com e sem rotação e escoamentos compressíveis turbulentos com e sem rotação. Além disso, uma avaliação do modelo de turbulência em um contexto de otimização é apresentada. Os exemplos numéricos mostram que o cálculo de sensibilidades está implementado corretamente e que a metodologia desenvolvida é capaz de gerar projetos para trabalhar com escoamentos compressíveis e rotativos.Biblioteca Digitais de Teses e Dissertações da USPSilva, Emilio Carlos NelliOkubo Junior, Carlos Massaiti2022-09-16info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfhttps://www.teses.usp.br/teses/disponiveis/3/3152/tde-08122022-144128/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesseng2022-12-08T16:55:54Zoai:teses.usp.br:tde-08122022-144128Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212022-12-08T16:55:54Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false |
dc.title.none.fl_str_mv |
Topology optimization of compressible flows using a discrete adjoint approach. Otimização topológica de escoamentos compressíveis usando uma abordagem de adjunto discreto. |
title |
Topology optimization of compressible flows using a discrete adjoint approach. |
spellingShingle |
Topology optimization of compressible flows using a discrete adjoint approach. Okubo Junior, Carlos Massaiti Compressible flow Discrete adjoint method Escoamento compressível Escoamento rotativo Finite volume method Método adjunto discreto Método dos volumes finitos Otimização topológica Rotating flow Topology optimization |
title_short |
Topology optimization of compressible flows using a discrete adjoint approach. |
title_full |
Topology optimization of compressible flows using a discrete adjoint approach. |
title_fullStr |
Topology optimization of compressible flows using a discrete adjoint approach. |
title_full_unstemmed |
Topology optimization of compressible flows using a discrete adjoint approach. |
title_sort |
Topology optimization of compressible flows using a discrete adjoint approach. |
author |
Okubo Junior, Carlos Massaiti |
author_facet |
Okubo Junior, Carlos Massaiti |
author_role |
author |
dc.contributor.none.fl_str_mv |
Silva, Emilio Carlos Nelli |
dc.contributor.author.fl_str_mv |
Okubo Junior, Carlos Massaiti |
dc.subject.por.fl_str_mv |
Compressible flow Discrete adjoint method Escoamento compressível Escoamento rotativo Finite volume method Método adjunto discreto Método dos volumes finitos Otimização topológica Rotating flow Topology optimization |
topic |
Compressible flow Discrete adjoint method Escoamento compressível Escoamento rotativo Finite volume method Método adjunto discreto Método dos volumes finitos Otimização topológica Rotating flow Topology optimization |
description |
In this work the Topology Optimization Method is employed to generate designs with rotating compressible flows. The Navier Stokes and energy equations are solved for steady state cases. The perfect gas model is used. The Brinkman penalization is applied to represent the solid regions inside the domain. The physical model is represented in a rotating reference frame and, to account for turbulent flows, the Favre average is used with the Wray Agarwal turbulence model from 2018. The main objective of the work is to optimize designs with compressible rotating flows, however incompressible and non-rotating cases have also been accounted. The objective functions considered for incompressible flows are the energy dissipation and the pump efficiency and, for compressible flow problems, the entropy variation and the impeller isentropic efficiency. The calculation of the sensitivities for the optimization problem is executed with the adjoint method in the continuous and the discrete approaches. The discrete approach developed is a novel methodology and is based on a finite differences scheme. The implementation is made with the use of the finite volume library OpenFOAM, the C++ library Eigen and the scientific library PETSc. Numerical examples are presented considering incompressible laminar flows with and without rotation, compressible laminar flows with and without rotation and compressible turbulent flows with and without rotation. Also, an assessment of the behavior of the turbulence model in an optimization context is performed. The numerical examples show that the sensitivity calculation is correctly implemented and the methodology developed is capable of generating designs to work with compressible rotating flows. |
publishDate |
2022 |
dc.date.none.fl_str_mv |
2022-09-16 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
format |
doctoralThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://www.teses.usp.br/teses/disponiveis/3/3152/tde-08122022-144128/ |
url |
https://www.teses.usp.br/teses/disponiveis/3/3152/tde-08122022-144128/ |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
|
dc.rights.driver.fl_str_mv |
Liberar o conteúdo para acesso público. info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Liberar o conteúdo para acesso público. |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.coverage.none.fl_str_mv |
|
dc.publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações da USP instname:Universidade de São Paulo (USP) instacron:USP |
instname_str |
Universidade de São Paulo (USP) |
instacron_str |
USP |
institution |
USP |
reponame_str |
Biblioteca Digital de Teses e Dissertações da USP |
collection |
Biblioteca Digital de Teses e Dissertações da USP |
repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP) |
repository.mail.fl_str_mv |
virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br |
_version_ |
1815256819515260928 |