Adaptive fusion of bright-field microscopy images acquired in different focal planes
Autor(a) principal: | |
---|---|
Data de Publicação: | 2020 |
Tipo de documento: | Dissertação |
Idioma: | eng |
Título da fonte: | Biblioteca Digital de Teses e Dissertações da USP |
Texto Completo: | https://www.teses.usp.br/teses/disponiveis/55/55134/tde-10092020-164245/ |
Resumo: | Microscopy is an extremely relevant technique related to tasks that deal with micrometric order structures. Its use dates back to the 17th century and tends to evolve in parallel with the evolution of human technological knowledge. Among the various applications, the fields of biological and health sciences stand out, which involve structures normally invisible to the naked eye. There are unavoidable differences in depth between the points of the surfaces and structures which yield out-of-focus blur to images. However, high quality is necessary in order to allow precise analysis in microscopy applications. In this sense, image quality assessment and image fusion are examples of techniques that may be applied to solve the issue. Recent works on such fields show that mathematical techniques such as frequency domain analysis, multiresolution analysis and convolutional neural networks are effective to quantitatively assess the quality of images. At the same time, researchers also present many novel techniques for image fusion, either based on classical tools such as edge detection or based on state-of-the-art machine learning frameworks. The aim of this work is to develop a two-stage method, consisting of a no-reference image quality assessment and an image fusion step, to perform the fusion of bright-field light microscopy images acquired in different focal planes, and propose novel bright-field microscopy image datasets of plant leaf histological samples as a benchmark for testing both quality assessment and fusion algorithms. Frequency domain analysis and statistical methods were used to obtain a quality metric and the energy of edges extracted with the Laplacian of Gaussian filter as the fusion rule. The mean Pearsons correlation coefficient obtained for the image quality method was 0.7448, while the mean spatial frequency for the image fusion method was 0.0667. |
id |
USP_66f191b0d8f7c81e4b9457e9182e93d2 |
---|---|
oai_identifier_str |
oai:teses.usp.br:tde-10092020-164245 |
network_acronym_str |
USP |
network_name_str |
Biblioteca Digital de Teses e Dissertações da USP |
repository_id_str |
2721 |
spelling |
Adaptive fusion of bright-field microscopy images acquired in different focal planesFusão adaptativa em imagens de microscopia de campo claro adquiridas em diferentes planos focaisAvaliação de qualidade de imagem sem referênciaBright-field microscopyDiscrete Fourier transformFusão de imagens multifocaisLaplacian of gaussianLaplaciano da gaussianaMicroscopia de campo claroMulti-focus image fusionNo-reference image quality assessmentTransformada discreta de FourierMicroscopy is an extremely relevant technique related to tasks that deal with micrometric order structures. Its use dates back to the 17th century and tends to evolve in parallel with the evolution of human technological knowledge. Among the various applications, the fields of biological and health sciences stand out, which involve structures normally invisible to the naked eye. There are unavoidable differences in depth between the points of the surfaces and structures which yield out-of-focus blur to images. However, high quality is necessary in order to allow precise analysis in microscopy applications. In this sense, image quality assessment and image fusion are examples of techniques that may be applied to solve the issue. Recent works on such fields show that mathematical techniques such as frequency domain analysis, multiresolution analysis and convolutional neural networks are effective to quantitatively assess the quality of images. At the same time, researchers also present many novel techniques for image fusion, either based on classical tools such as edge detection or based on state-of-the-art machine learning frameworks. The aim of this work is to develop a two-stage method, consisting of a no-reference image quality assessment and an image fusion step, to perform the fusion of bright-field light microscopy images acquired in different focal planes, and propose novel bright-field microscopy image datasets of plant leaf histological samples as a benchmark for testing both quality assessment and fusion algorithms. Frequency domain analysis and statistical methods were used to obtain a quality metric and the energy of edges extracted with the Laplacian of Gaussian filter as the fusion rule. The mean Pearsons correlation coefficient obtained for the image quality method was 0.7448, while the mean spatial frequency for the image fusion method was 0.0667.A microscopia é uma técnica extremamente relevante relacionada a tarefas que lidam com estruturas de ordem micrométrica. Seu uso remonta ao século XVII e tende a avançar paralelamente à evolução conhecimento tecnológico humano. Dentre as diversas aplicações, destacam-se as áreas de ciências biológicas e da saúde, que envolvem estruturas normalmente invisíveis a olho nu. Existem diferenças de profundidade inevitáveis entre os pontos das superfícies e estruturas que produzem desfoque nas imagens; no entanto, é necessário que tais images possuam alta qualidade para análises precisas em aplicações de microscopia. Neste aspecto, a avaliação da qualidade da imagem e a fusão de imagens são exemplos de técnicas que podem ser aplicadas para resolver o problema. Trabalhos recentes em tais áreas mostram que técnicas matemáticas como análise no domínio da frequência, análise multirresolução e redes neurais convolucionais são eficazes para avaliar quantitativamente a qualidade das imagens; paralelamente, os pesquisadores também apresentam muitas técnicas inovadoras para fusão de imagens baseadas em ferramentas clássicas como detecção de bordas ou em estruturas de aprendizado de máquina de última geração. O objetivo deste trabalho é desenvolver um método de duas etapas - uma etapa de avaliação da qualidade da imagem sem referência e uma etapa de fusão da imagem, para realizar a fusão de imagens de microscopia de luz de campo claro adquiridas em diferentes planos focais, além de propor novos conjuntos de dados de imagens de microscopia de campo claro de amostras histológicas de folhas de plantas como referência para testar os algoritmos de avaliação da qualidade e fusão. Análise no domínio da frequência e métodos estatísticos foram utilzados para obter uma métrica de qualidade, e a energia das arestas extraídas com o filtro Laplaciano da Gaussiana foi utilizada como regra de fusão. O coeficiente de correlação de Pearson médio obtido para o método de qualidade de imagem foi de 0.7448, e a frequência espacial média para o método de fusão de imagens foi de 0.0667.Biblioteca Digitais de Teses e Dissertações da USPBatista Neto, João do Espírito SantoBruno, Odemir MartinezCatanante, Victor Augusto Alves2020-07-10info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttps://www.teses.usp.br/teses/disponiveis/55/55134/tde-10092020-164245/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesseng2020-09-10T22:51:02Zoai:teses.usp.br:tde-10092020-164245Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212020-09-10T22:51:02Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false |
dc.title.none.fl_str_mv |
Adaptive fusion of bright-field microscopy images acquired in different focal planes Fusão adaptativa em imagens de microscopia de campo claro adquiridas em diferentes planos focais |
title |
Adaptive fusion of bright-field microscopy images acquired in different focal planes |
spellingShingle |
Adaptive fusion of bright-field microscopy images acquired in different focal planes Catanante, Victor Augusto Alves Avaliação de qualidade de imagem sem referência Bright-field microscopy Discrete Fourier transform Fusão de imagens multifocais Laplacian of gaussian Laplaciano da gaussiana Microscopia de campo claro Multi-focus image fusion No-reference image quality assessment Transformada discreta de Fourier |
title_short |
Adaptive fusion of bright-field microscopy images acquired in different focal planes |
title_full |
Adaptive fusion of bright-field microscopy images acquired in different focal planes |
title_fullStr |
Adaptive fusion of bright-field microscopy images acquired in different focal planes |
title_full_unstemmed |
Adaptive fusion of bright-field microscopy images acquired in different focal planes |
title_sort |
Adaptive fusion of bright-field microscopy images acquired in different focal planes |
author |
Catanante, Victor Augusto Alves |
author_facet |
Catanante, Victor Augusto Alves |
author_role |
author |
dc.contributor.none.fl_str_mv |
Batista Neto, João do Espírito Santo Bruno, Odemir Martinez |
dc.contributor.author.fl_str_mv |
Catanante, Victor Augusto Alves |
dc.subject.por.fl_str_mv |
Avaliação de qualidade de imagem sem referência Bright-field microscopy Discrete Fourier transform Fusão de imagens multifocais Laplacian of gaussian Laplaciano da gaussiana Microscopia de campo claro Multi-focus image fusion No-reference image quality assessment Transformada discreta de Fourier |
topic |
Avaliação de qualidade de imagem sem referência Bright-field microscopy Discrete Fourier transform Fusão de imagens multifocais Laplacian of gaussian Laplaciano da gaussiana Microscopia de campo claro Multi-focus image fusion No-reference image quality assessment Transformada discreta de Fourier |
description |
Microscopy is an extremely relevant technique related to tasks that deal with micrometric order structures. Its use dates back to the 17th century and tends to evolve in parallel with the evolution of human technological knowledge. Among the various applications, the fields of biological and health sciences stand out, which involve structures normally invisible to the naked eye. There are unavoidable differences in depth between the points of the surfaces and structures which yield out-of-focus blur to images. However, high quality is necessary in order to allow precise analysis in microscopy applications. In this sense, image quality assessment and image fusion are examples of techniques that may be applied to solve the issue. Recent works on such fields show that mathematical techniques such as frequency domain analysis, multiresolution analysis and convolutional neural networks are effective to quantitatively assess the quality of images. At the same time, researchers also present many novel techniques for image fusion, either based on classical tools such as edge detection or based on state-of-the-art machine learning frameworks. The aim of this work is to develop a two-stage method, consisting of a no-reference image quality assessment and an image fusion step, to perform the fusion of bright-field light microscopy images acquired in different focal planes, and propose novel bright-field microscopy image datasets of plant leaf histological samples as a benchmark for testing both quality assessment and fusion algorithms. Frequency domain analysis and statistical methods were used to obtain a quality metric and the energy of edges extracted with the Laplacian of Gaussian filter as the fusion rule. The mean Pearsons correlation coefficient obtained for the image quality method was 0.7448, while the mean spatial frequency for the image fusion method was 0.0667. |
publishDate |
2020 |
dc.date.none.fl_str_mv |
2020-07-10 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://www.teses.usp.br/teses/disponiveis/55/55134/tde-10092020-164245/ |
url |
https://www.teses.usp.br/teses/disponiveis/55/55134/tde-10092020-164245/ |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
|
dc.rights.driver.fl_str_mv |
Liberar o conteúdo para acesso público. info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Liberar o conteúdo para acesso público. |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.coverage.none.fl_str_mv |
|
dc.publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações da USP instname:Universidade de São Paulo (USP) instacron:USP |
instname_str |
Universidade de São Paulo (USP) |
instacron_str |
USP |
institution |
USP |
reponame_str |
Biblioteca Digital de Teses e Dissertações da USP |
collection |
Biblioteca Digital de Teses e Dissertações da USP |
repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP) |
repository.mail.fl_str_mv |
virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br |
_version_ |
1815256921911853056 |