Análise dos modelos AMMI bivariados
Autor(a) principal: | |
---|---|
Data de Publicação: | 2009 |
Tipo de documento: | Dissertação |
Idioma: | por |
Título da fonte: | Biblioteca Digital de Teses e Dissertações da USP |
Texto Completo: | http://www.teses.usp.br/teses/disponiveis/11/11134/tde-11022009-080418/ |
Resumo: | E comum encontrar nos ensaios experimentais a analise de dois fatores, cada um com diferente numero de níveis, eles proporcionam uma tabela de dados de dupla entrada. Geralmente a analise destes dados e feita através da analise de variância - ANOVA, cumprindo algumas pressuposições básicas do modelo, mas ha outros estudos nos quais e de grande importância a interação, como e o caso dos estudos de melhoramento genético, em que o objetivo e selecionar genótipos com ótimos desempenhos em diferentes ambientes. A pouca eficiência na analise da interação dos genótipos com os ambientes (GE) da ANOVA pode representar um problema aos melhoristas, que devem tirar proveito dessa interação para os seus estudos. Os modelos aditivos com interação multiplicativa - AMMI, traz vantagens na seleção de genótipos quando comparados com métodos convencionais, pois proporcionam uma melhor analise da interação (GE), alem de permitir combinar componentes aditivos e multiplicativos em um mesmo modelo; estes modelos tem demonstrado ser eficientes na analise quando se tem apenas uma variável resposta, mas quando há mais de uma, ainda n~ao existe um procedimento geral para realizar a analise. O presente trabalho propõe uma metodologia de analise quando se têm modelos AMMI bivariados, realizando analises individuais das variáveis respostas seguidas de uma analise de procrustes, que permite fazer comparações dos resultados obtidos nas analises individuais e finalmente uma confirmação destes resultados através da analise multivariada de variância - MANOVA. Os resultados obtidos permitem concluir que a analises AMMI e procrustes proporcionam uma boa alternativa de analise para os modelos AMMI bivariados. |
id |
USP_67db8e801b41b94062107bfd1465c101 |
---|---|
oai_identifier_str |
oai:teses.usp.br:tde-11022009-080418 |
network_acronym_str |
USP |
network_name_str |
Biblioteca Digital de Teses e Dissertações da USP |
repository_id_str |
2721 |
spelling |
Análise dos modelos AMMI bivariadosBivariate AMMI models analysisAnálise de variânciaAnálise multivariadaanalysis of varianceCorrelação genética e ambientalDelineamento experimentalexperimental designgenetic and environmental correlationGenética estatísticaModelo estatístico.multivariate analysisstatistical geneticstatistical model.E comum encontrar nos ensaios experimentais a analise de dois fatores, cada um com diferente numero de níveis, eles proporcionam uma tabela de dados de dupla entrada. Geralmente a analise destes dados e feita através da analise de variância - ANOVA, cumprindo algumas pressuposições básicas do modelo, mas ha outros estudos nos quais e de grande importância a interação, como e o caso dos estudos de melhoramento genético, em que o objetivo e selecionar genótipos com ótimos desempenhos em diferentes ambientes. A pouca eficiência na analise da interação dos genótipos com os ambientes (GE) da ANOVA pode representar um problema aos melhoristas, que devem tirar proveito dessa interação para os seus estudos. Os modelos aditivos com interação multiplicativa - AMMI, traz vantagens na seleção de genótipos quando comparados com métodos convencionais, pois proporcionam uma melhor analise da interação (GE), alem de permitir combinar componentes aditivos e multiplicativos em um mesmo modelo; estes modelos tem demonstrado ser eficientes na analise quando se tem apenas uma variável resposta, mas quando há mais de uma, ainda n~ao existe um procedimento geral para realizar a analise. O presente trabalho propõe uma metodologia de analise quando se têm modelos AMMI bivariados, realizando analises individuais das variáveis respostas seguidas de uma analise de procrustes, que permite fazer comparações dos resultados obtidos nas analises individuais e finalmente uma confirmação destes resultados através da analise multivariada de variância - MANOVA. Os resultados obtidos permitem concluir que a analises AMMI e procrustes proporcionam uma boa alternativa de analise para os modelos AMMI bivariados.Is frequently nd in the studies the two way factor analysis, each factor with dierent number of levels, they conform a two way table of data, generally the analysis of the data is made with the analysis of variance - ANOVA, satisfying some assumptions, but there are some studies in which is very important the interaction, like the case of the improvement studies, where the objetive is select genotypes with optimum performance in dierents environments. The poor eciency in the genotypes and environment interaction (GE) analysis of the ANOVA can represents a problem for the researchers, that need to take advantage of the interaction. The additive main eects and multiplicative interactions model - AMMI, give advantages in the selection of genotypes when is compare with traditional methods, because give a better interaction (GE) analysis, also permit combine additive and multiplicative components in the same model, these models have demonstrated be ecient in the analysis with just one response variable but when there is more than one there is not a clear procedure to do the analysis. This work presents a analysis methodology for the bivariate AMMI models, doing individuals analysis in the response variables follow by the procrustes, which permit compare the results of the individuals analysis, and nally a conrmation of theses results with the multivariate analysis of variance - MANOVA. From the results can be concluded that the AMMI and the procrustes analysis give a good alternative for the bivariate AMMI models analysis.Biblioteca Digitais de Teses e Dissertações da USPDias, Carlos Tadeu dos SantosPeña Garcia, Marisol2009-02-03info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://www.teses.usp.br/teses/disponiveis/11/11134/tde-11022009-080418/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesspor2016-07-28T16:09:57Zoai:teses.usp.br:tde-11022009-080418Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212016-07-28T16:09:57Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false |
dc.title.none.fl_str_mv |
Análise dos modelos AMMI bivariados Bivariate AMMI models analysis |
title |
Análise dos modelos AMMI bivariados |
spellingShingle |
Análise dos modelos AMMI bivariados Peña Garcia, Marisol Análise de variância Análise multivariada analysis of variance Correlação genética e ambiental Delineamento experimental experimental design genetic and environmental correlation Genética estatística Modelo estatístico. multivariate analysis statistical genetic statistical model. |
title_short |
Análise dos modelos AMMI bivariados |
title_full |
Análise dos modelos AMMI bivariados |
title_fullStr |
Análise dos modelos AMMI bivariados |
title_full_unstemmed |
Análise dos modelos AMMI bivariados |
title_sort |
Análise dos modelos AMMI bivariados |
author |
Peña Garcia, Marisol |
author_facet |
Peña Garcia, Marisol |
author_role |
author |
dc.contributor.none.fl_str_mv |
Dias, Carlos Tadeu dos Santos |
dc.contributor.author.fl_str_mv |
Peña Garcia, Marisol |
dc.subject.por.fl_str_mv |
Análise de variância Análise multivariada analysis of variance Correlação genética e ambiental Delineamento experimental experimental design genetic and environmental correlation Genética estatística Modelo estatístico. multivariate analysis statistical genetic statistical model. |
topic |
Análise de variância Análise multivariada analysis of variance Correlação genética e ambiental Delineamento experimental experimental design genetic and environmental correlation Genética estatística Modelo estatístico. multivariate analysis statistical genetic statistical model. |
description |
E comum encontrar nos ensaios experimentais a analise de dois fatores, cada um com diferente numero de níveis, eles proporcionam uma tabela de dados de dupla entrada. Geralmente a analise destes dados e feita através da analise de variância - ANOVA, cumprindo algumas pressuposições básicas do modelo, mas ha outros estudos nos quais e de grande importância a interação, como e o caso dos estudos de melhoramento genético, em que o objetivo e selecionar genótipos com ótimos desempenhos em diferentes ambientes. A pouca eficiência na analise da interação dos genótipos com os ambientes (GE) da ANOVA pode representar um problema aos melhoristas, que devem tirar proveito dessa interação para os seus estudos. Os modelos aditivos com interação multiplicativa - AMMI, traz vantagens na seleção de genótipos quando comparados com métodos convencionais, pois proporcionam uma melhor analise da interação (GE), alem de permitir combinar componentes aditivos e multiplicativos em um mesmo modelo; estes modelos tem demonstrado ser eficientes na analise quando se tem apenas uma variável resposta, mas quando há mais de uma, ainda n~ao existe um procedimento geral para realizar a analise. O presente trabalho propõe uma metodologia de analise quando se têm modelos AMMI bivariados, realizando analises individuais das variáveis respostas seguidas de uma analise de procrustes, que permite fazer comparações dos resultados obtidos nas analises individuais e finalmente uma confirmação destes resultados através da analise multivariada de variância - MANOVA. Os resultados obtidos permitem concluir que a analises AMMI e procrustes proporcionam uma boa alternativa de analise para os modelos AMMI bivariados. |
publishDate |
2009 |
dc.date.none.fl_str_mv |
2009-02-03 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://www.teses.usp.br/teses/disponiveis/11/11134/tde-11022009-080418/ |
url |
http://www.teses.usp.br/teses/disponiveis/11/11134/tde-11022009-080418/ |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.relation.none.fl_str_mv |
|
dc.rights.driver.fl_str_mv |
Liberar o conteúdo para acesso público. info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Liberar o conteúdo para acesso público. |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.coverage.none.fl_str_mv |
|
dc.publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações da USP instname:Universidade de São Paulo (USP) instacron:USP |
instname_str |
Universidade de São Paulo (USP) |
instacron_str |
USP |
institution |
USP |
reponame_str |
Biblioteca Digital de Teses e Dissertações da USP |
collection |
Biblioteca Digital de Teses e Dissertações da USP |
repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP) |
repository.mail.fl_str_mv |
virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br |
_version_ |
1815256852615659520 |