Ar bulk diffusivity experiments in microgabbros with implications for the Venusian geodynamics
Autor(a) principal: | |
---|---|
Data de Publicação: | 2022 |
Tipo de documento: | Dissertação |
Idioma: | eng |
Título da fonte: | Biblioteca Digital de Teses e Dissertações da USP |
Texto Completo: | https://www.teses.usp.br/teses/disponiveis/44/44143/tde-07062022-071135/ |
Resumo: | The argon geochemical system is an important tool for the planetary sciences. 40Ar is radiogenic and produced by the radioactive decay of 40K (half-life ~ 1.25 Ga) in minerals in the crust and mantle of rocky planets, while 36Ar and 38Ar are primordial. The atmospheres of Earth and Venus share similar 36Ar/38Ar ratios (5.3 and 5.5, respectively) but contrasting 40Ar/36Ar ratios (~300 vs. 1, respectively), indicating that Earth is more effective in degassing 40Ar. Because volcanism is a major 40Ar degassing agent, these data suggest higher volcanic activity through Earths evolution relative to Venus. However, diffusion is another possible 40Ar transporter from geospheres to atmospheres and the average surface temperature on Venus (460 ºC) is above the closure temperature of the gas in most silicate systems. Because there is no data concerning the diffusion of Ar in basaltic rocks, here, bulk diffusion experiments were made using synthetic microgabbros (similar to Venusian basalts) under 460 ºC (1 atm) to investigate the effectiveness of diffusion in mobilizing Ar in the crust of Venus. A vertical tubular furnace (VTF) was used to melt and crystallize a tholeiitic basalt powder under Ar saturation conditions to dope the aliquots with the gas, generating a total of ten Ar-saturated microgabbro beads. Eight of these beads were reintroduced into the VTF (100% CO2 atmosphere) and muffle furnace (MF, air composition) simultaneously (4 in each furnace) at 460ºC. The two furnace apparatuses were used to check if the atmospheric composition would alter the results. Aliquots were then removed after 2, 4, 8, and 16 days. Bulk diffusion coefficients (Dbulk) were obtained by analyzing the variation of Ar concentration in the beads after the experiments. Experiments held in the VTF and MF had similar results. Two different solutions for the diffusion equation were used, with the best results showing Dbulk values of ~ 3.5 x 10-13 m²/s. The results indicate that diffusion is very slow in the analyzed conditions and that less than 1 % of the total Ar would have been removed from the Venusian crust if diffusion was the only degassing agent. Thus, the data support the idea that volcanism is the main source 40Ar to the atmosphere in anhydrous crusts and that, indeed, Earth must have had higher volcanic activity in its history in comparison to Venus. Finally, I suggest that the crust of Venus has an excess of 40Ar and that the planets atmospheric 40Ar/36Ar ratio should become more similar to Earths after the next global resurfacing event, when magma should be in direct contact with the atmosphere, favoring the degassing of 40Ar. |
id |
USP_67ea60ef10c66f5453d262431a2a095f |
---|---|
oai_identifier_str |
oai:teses.usp.br:tde-07062022-071135 |
network_acronym_str |
USP |
network_name_str |
Biblioteca Digital de Teses e Dissertações da USP |
repository_id_str |
2721 |
spelling |
Ar bulk diffusivity experiments in microgabbros with implications for the Venusian geodynamicsExperimentos de difusão efetiva de Ar em micrograbos com implicações para a geodinâmica venusianaDiffusionDifusãoExperimental geochemistryExperimental petrologyGeodinâmicaGeodynamicsGeoquímica experimentalPetrologia experimentalVenusVênusThe argon geochemical system is an important tool for the planetary sciences. 40Ar is radiogenic and produced by the radioactive decay of 40K (half-life ~ 1.25 Ga) in minerals in the crust and mantle of rocky planets, while 36Ar and 38Ar are primordial. The atmospheres of Earth and Venus share similar 36Ar/38Ar ratios (5.3 and 5.5, respectively) but contrasting 40Ar/36Ar ratios (~300 vs. 1, respectively), indicating that Earth is more effective in degassing 40Ar. Because volcanism is a major 40Ar degassing agent, these data suggest higher volcanic activity through Earths evolution relative to Venus. However, diffusion is another possible 40Ar transporter from geospheres to atmospheres and the average surface temperature on Venus (460 ºC) is above the closure temperature of the gas in most silicate systems. Because there is no data concerning the diffusion of Ar in basaltic rocks, here, bulk diffusion experiments were made using synthetic microgabbros (similar to Venusian basalts) under 460 ºC (1 atm) to investigate the effectiveness of diffusion in mobilizing Ar in the crust of Venus. A vertical tubular furnace (VTF) was used to melt and crystallize a tholeiitic basalt powder under Ar saturation conditions to dope the aliquots with the gas, generating a total of ten Ar-saturated microgabbro beads. Eight of these beads were reintroduced into the VTF (100% CO2 atmosphere) and muffle furnace (MF, air composition) simultaneously (4 in each furnace) at 460ºC. The two furnace apparatuses were used to check if the atmospheric composition would alter the results. Aliquots were then removed after 2, 4, 8, and 16 days. Bulk diffusion coefficients (Dbulk) were obtained by analyzing the variation of Ar concentration in the beads after the experiments. Experiments held in the VTF and MF had similar results. Two different solutions for the diffusion equation were used, with the best results showing Dbulk values of ~ 3.5 x 10-13 m²/s. The results indicate that diffusion is very slow in the analyzed conditions and that less than 1 % of the total Ar would have been removed from the Venusian crust if diffusion was the only degassing agent. Thus, the data support the idea that volcanism is the main source 40Ar to the atmosphere in anhydrous crusts and that, indeed, Earth must have had higher volcanic activity in its history in comparison to Venus. Finally, I suggest that the crust of Venus has an excess of 40Ar and that the planets atmospheric 40Ar/36Ar ratio should become more similar to Earths after the next global resurfacing event, when magma should be in direct contact with the atmosphere, favoring the degassing of 40Ar.O sistema geoquímico do argônio é uma importante ferramenta para as ciências planetárias. O 40Ar é radiogênico e produzido através do decaimento radioativo de 40K (meia-vida ~ 1.25 Ga) em minerais na crosta e manto de planetas rochosos, enquanto os isótopos 36Ar e 38Ar são primordiais. As atmosferas da Terra e de Vênus possuem razões 36Ar/38Ar semelhantes (5.3 e 5.5, respectivamente) mas contrastantes razões 40Ar/36Ar (~ 300 vs. 1, respectivamente), indicando que a Terra é mais eficiente na degaseificação de 40Ar. Como vulcanismo é um importante mecanismo de degaseifação de 40Ar, esses dados sugerem uma maior atividade vulcânica na Terra em relação a Vênus durante a evolução destes planetas. Entretanto, difusão é um outro possível transportador de 40Ar de geosferas para atmosferas e a temperatura superficial média em Vênus (460 ºC) é maior que a temperatura de fechamento do gás na maioria dos sistemas silicáticos. Como não há dados acerca da difusão de Ar em rochas basálticas, neste trabalho foram feitos experimentos de difusão efetiva utilizando microgabros sintéticos (similares a basaltos venusianos) a 460 ºC (1 atm) para investigar a eficiência da difusão em mobilizar Ar na crosta de Vênus. Foi utilizada uma fornalha vertical tubular (VTF) para fundir e cristalizar o pó de um basalto toleiítico em condições de saturação de Ar, gerando um total de 10 pérolas de microgabro saturadas em Ar. Oito dessas pérolas foram reintroduzidas na VTF (composição atmosférica controloada de 100% CO2) e em uma mufla (MF, composição do ar) simultaneamente (4 em cada forno) a 460 ºC. As duas fornalhas foram utilizadas para checar se a composição atmosférica afetaria os resultados. Alíquotas foram então removidas depois de 2, 4, 8 e 16 dias. Coeficientes de difusão efetiva (Dbulk) foram obtidos através da análise da variação de concentração de Ar nas pérolas após os experimentos. Experimentos realizados na VTF e MF tiveram resultados semelhantes. Duas soluções da equação de difusão foram utilizadas, com os melhores resultados indicando Dbulk de 3.5 x 10-13 m²/s. Os resultados indicam que difusão é um processo muito lento nas condições analisadas e que menos de 1% do Ar total teria sido removido da crosta venusiana se difusão fosse o único mecanismo de degaseificação. Portanto, os dados suportam a ideia de que vulcanismo é a principal fonte de 40Ar para a atmosfera em planetas com crostas anidras e que, de fato, deve ter havido maior atividade vulcânica na Terra que em Vênus durante as evoluções dos planetas. Finalmente, eu sugiro que a crosta de Vênus possui excesso de 40Ar e que a razão 40Ar/36Ar na atmosfera venusiana deve se tornar mais semelhante com a da Terra após o próximo evento global de produção crustal, quando magma estaria em contato direto com a atmosfera, favorecendo a degaseificação de 40Ar.Biblioteca Digitais de Teses e Dissertações da USPVlach, Silvio Roberto FariasSemêdo, Pedro de Almeida2022-04-27info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttps://www.teses.usp.br/teses/disponiveis/44/44143/tde-07062022-071135/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesseng2022-06-07T10:59:21Zoai:teses.usp.br:tde-07062022-071135Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212022-06-07T10:59:21Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false |
dc.title.none.fl_str_mv |
Ar bulk diffusivity experiments in microgabbros with implications for the Venusian geodynamics Experimentos de difusão efetiva de Ar em micrograbos com implicações para a geodinâmica venusiana |
title |
Ar bulk diffusivity experiments in microgabbros with implications for the Venusian geodynamics |
spellingShingle |
Ar bulk diffusivity experiments in microgabbros with implications for the Venusian geodynamics Semêdo, Pedro de Almeida Diffusion Difusão Experimental geochemistry Experimental petrology Geodinâmica Geodynamics Geoquímica experimental Petrologia experimental Venus Vênus |
title_short |
Ar bulk diffusivity experiments in microgabbros with implications for the Venusian geodynamics |
title_full |
Ar bulk diffusivity experiments in microgabbros with implications for the Venusian geodynamics |
title_fullStr |
Ar bulk diffusivity experiments in microgabbros with implications for the Venusian geodynamics |
title_full_unstemmed |
Ar bulk diffusivity experiments in microgabbros with implications for the Venusian geodynamics |
title_sort |
Ar bulk diffusivity experiments in microgabbros with implications for the Venusian geodynamics |
author |
Semêdo, Pedro de Almeida |
author_facet |
Semêdo, Pedro de Almeida |
author_role |
author |
dc.contributor.none.fl_str_mv |
Vlach, Silvio Roberto Farias |
dc.contributor.author.fl_str_mv |
Semêdo, Pedro de Almeida |
dc.subject.por.fl_str_mv |
Diffusion Difusão Experimental geochemistry Experimental petrology Geodinâmica Geodynamics Geoquímica experimental Petrologia experimental Venus Vênus |
topic |
Diffusion Difusão Experimental geochemistry Experimental petrology Geodinâmica Geodynamics Geoquímica experimental Petrologia experimental Venus Vênus |
description |
The argon geochemical system is an important tool for the planetary sciences. 40Ar is radiogenic and produced by the radioactive decay of 40K (half-life ~ 1.25 Ga) in minerals in the crust and mantle of rocky planets, while 36Ar and 38Ar are primordial. The atmospheres of Earth and Venus share similar 36Ar/38Ar ratios (5.3 and 5.5, respectively) but contrasting 40Ar/36Ar ratios (~300 vs. 1, respectively), indicating that Earth is more effective in degassing 40Ar. Because volcanism is a major 40Ar degassing agent, these data suggest higher volcanic activity through Earths evolution relative to Venus. However, diffusion is another possible 40Ar transporter from geospheres to atmospheres and the average surface temperature on Venus (460 ºC) is above the closure temperature of the gas in most silicate systems. Because there is no data concerning the diffusion of Ar in basaltic rocks, here, bulk diffusion experiments were made using synthetic microgabbros (similar to Venusian basalts) under 460 ºC (1 atm) to investigate the effectiveness of diffusion in mobilizing Ar in the crust of Venus. A vertical tubular furnace (VTF) was used to melt and crystallize a tholeiitic basalt powder under Ar saturation conditions to dope the aliquots with the gas, generating a total of ten Ar-saturated microgabbro beads. Eight of these beads were reintroduced into the VTF (100% CO2 atmosphere) and muffle furnace (MF, air composition) simultaneously (4 in each furnace) at 460ºC. The two furnace apparatuses were used to check if the atmospheric composition would alter the results. Aliquots were then removed after 2, 4, 8, and 16 days. Bulk diffusion coefficients (Dbulk) were obtained by analyzing the variation of Ar concentration in the beads after the experiments. Experiments held in the VTF and MF had similar results. Two different solutions for the diffusion equation were used, with the best results showing Dbulk values of ~ 3.5 x 10-13 m²/s. The results indicate that diffusion is very slow in the analyzed conditions and that less than 1 % of the total Ar would have been removed from the Venusian crust if diffusion was the only degassing agent. Thus, the data support the idea that volcanism is the main source 40Ar to the atmosphere in anhydrous crusts and that, indeed, Earth must have had higher volcanic activity in its history in comparison to Venus. Finally, I suggest that the crust of Venus has an excess of 40Ar and that the planets atmospheric 40Ar/36Ar ratio should become more similar to Earths after the next global resurfacing event, when magma should be in direct contact with the atmosphere, favoring the degassing of 40Ar. |
publishDate |
2022 |
dc.date.none.fl_str_mv |
2022-04-27 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://www.teses.usp.br/teses/disponiveis/44/44143/tde-07062022-071135/ |
url |
https://www.teses.usp.br/teses/disponiveis/44/44143/tde-07062022-071135/ |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
|
dc.rights.driver.fl_str_mv |
Liberar o conteúdo para acesso público. info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Liberar o conteúdo para acesso público. |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.coverage.none.fl_str_mv |
|
dc.publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações da USP instname:Universidade de São Paulo (USP) instacron:USP |
instname_str |
Universidade de São Paulo (USP) |
instacron_str |
USP |
institution |
USP |
reponame_str |
Biblioteca Digital de Teses e Dissertações da USP |
collection |
Biblioteca Digital de Teses e Dissertações da USP |
repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP) |
repository.mail.fl_str_mv |
virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br |
_version_ |
1815256786666520576 |