Ar bulk diffusivity experiments in microgabbros with implications for the Venusian geodynamics

Detalhes bibliográficos
Autor(a) principal: Semêdo, Pedro de Almeida
Data de Publicação: 2022
Tipo de documento: Dissertação
Idioma: eng
Título da fonte: Biblioteca Digital de Teses e Dissertações da USP
Texto Completo: https://www.teses.usp.br/teses/disponiveis/44/44143/tde-07062022-071135/
Resumo: The argon geochemical system is an important tool for the planetary sciences. 40Ar is radiogenic and produced by the radioactive decay of 40K (half-life ~ 1.25 Ga) in minerals in the crust and mantle of rocky planets, while 36Ar and 38Ar are primordial. The atmospheres of Earth and Venus share similar 36Ar/38Ar ratios (5.3 and 5.5, respectively) but contrasting 40Ar/36Ar ratios (~300 vs. 1, respectively), indicating that Earth is more effective in degassing 40Ar. Because volcanism is a major 40Ar degassing agent, these data suggest higher volcanic activity through Earths evolution relative to Venus. However, diffusion is another possible 40Ar transporter from geospheres to atmospheres and the average surface temperature on Venus (460 ºC) is above the closure temperature of the gas in most silicate systems. Because there is no data concerning the diffusion of Ar in basaltic rocks, here, bulk diffusion experiments were made using synthetic microgabbros (similar to Venusian basalts) under 460 ºC (1 atm) to investigate the effectiveness of diffusion in mobilizing Ar in the crust of Venus. A vertical tubular furnace (VTF) was used to melt and crystallize a tholeiitic basalt powder under Ar saturation conditions to dope the aliquots with the gas, generating a total of ten Ar-saturated microgabbro beads. Eight of these beads were reintroduced into the VTF (100% CO2 atmosphere) and muffle furnace (MF, air composition) simultaneously (4 in each furnace) at 460ºC. The two furnace apparatuses were used to check if the atmospheric composition would alter the results. Aliquots were then removed after 2, 4, 8, and 16 days. Bulk diffusion coefficients (Dbulk) were obtained by analyzing the variation of Ar concentration in the beads after the experiments. Experiments held in the VTF and MF had similar results. Two different solutions for the diffusion equation were used, with the best results showing Dbulk values of ~ 3.5 x 10-13 m²/s. The results indicate that diffusion is very slow in the analyzed conditions and that less than 1 % of the total Ar would have been removed from the Venusian crust if diffusion was the only degassing agent. Thus, the data support the idea that volcanism is the main source 40Ar to the atmosphere in anhydrous crusts and that, indeed, Earth must have had higher volcanic activity in its history in comparison to Venus. Finally, I suggest that the crust of Venus has an excess of 40Ar and that the planets atmospheric 40Ar/36Ar ratio should become more similar to Earths after the next global resurfacing event, when magma should be in direct contact with the atmosphere, favoring the degassing of 40Ar.
id USP_67ea60ef10c66f5453d262431a2a095f
oai_identifier_str oai:teses.usp.br:tde-07062022-071135
network_acronym_str USP
network_name_str Biblioteca Digital de Teses e Dissertações da USP
repository_id_str 2721
spelling Ar bulk diffusivity experiments in microgabbros with implications for the Venusian geodynamicsExperimentos de difusão efetiva de Ar em micrograbos com implicações para a geodinâmica venusianaDiffusionDifusãoExperimental geochemistryExperimental petrologyGeodinâmicaGeodynamicsGeoquímica experimentalPetrologia experimentalVenusVênusThe argon geochemical system is an important tool for the planetary sciences. 40Ar is radiogenic and produced by the radioactive decay of 40K (half-life ~ 1.25 Ga) in minerals in the crust and mantle of rocky planets, while 36Ar and 38Ar are primordial. The atmospheres of Earth and Venus share similar 36Ar/38Ar ratios (5.3 and 5.5, respectively) but contrasting 40Ar/36Ar ratios (~300 vs. 1, respectively), indicating that Earth is more effective in degassing 40Ar. Because volcanism is a major 40Ar degassing agent, these data suggest higher volcanic activity through Earths evolution relative to Venus. However, diffusion is another possible 40Ar transporter from geospheres to atmospheres and the average surface temperature on Venus (460 ºC) is above the closure temperature of the gas in most silicate systems. Because there is no data concerning the diffusion of Ar in basaltic rocks, here, bulk diffusion experiments were made using synthetic microgabbros (similar to Venusian basalts) under 460 ºC (1 atm) to investigate the effectiveness of diffusion in mobilizing Ar in the crust of Venus. A vertical tubular furnace (VTF) was used to melt and crystallize a tholeiitic basalt powder under Ar saturation conditions to dope the aliquots with the gas, generating a total of ten Ar-saturated microgabbro beads. Eight of these beads were reintroduced into the VTF (100% CO2 atmosphere) and muffle furnace (MF, air composition) simultaneously (4 in each furnace) at 460ºC. The two furnace apparatuses were used to check if the atmospheric composition would alter the results. Aliquots were then removed after 2, 4, 8, and 16 days. Bulk diffusion coefficients (Dbulk) were obtained by analyzing the variation of Ar concentration in the beads after the experiments. Experiments held in the VTF and MF had similar results. Two different solutions for the diffusion equation were used, with the best results showing Dbulk values of ~ 3.5 x 10-13 m²/s. The results indicate that diffusion is very slow in the analyzed conditions and that less than 1 % of the total Ar would have been removed from the Venusian crust if diffusion was the only degassing agent. Thus, the data support the idea that volcanism is the main source 40Ar to the atmosphere in anhydrous crusts and that, indeed, Earth must have had higher volcanic activity in its history in comparison to Venus. Finally, I suggest that the crust of Venus has an excess of 40Ar and that the planets atmospheric 40Ar/36Ar ratio should become more similar to Earths after the next global resurfacing event, when magma should be in direct contact with the atmosphere, favoring the degassing of 40Ar.O sistema geoquímico do argônio é uma importante ferramenta para as ciências planetárias. O 40Ar é radiogênico e produzido através do decaimento radioativo de 40K (meia-vida ~ 1.25 Ga) em minerais na crosta e manto de planetas rochosos, enquanto os isótopos 36Ar e 38Ar são primordiais. As atmosferas da Terra e de Vênus possuem razões 36Ar/38Ar semelhantes (5.3 e 5.5, respectivamente) mas contrastantes razões 40Ar/36Ar (~ 300 vs. 1, respectivamente), indicando que a Terra é mais eficiente na degaseificação de 40Ar. Como vulcanismo é um importante mecanismo de degaseifação de 40Ar, esses dados sugerem uma maior atividade vulcânica na Terra em relação a Vênus durante a evolução destes planetas. Entretanto, difusão é um outro possível transportador de 40Ar de geosferas para atmosferas e a temperatura superficial média em Vênus (460 ºC) é maior que a temperatura de fechamento do gás na maioria dos sistemas silicáticos. Como não há dados acerca da difusão de Ar em rochas basálticas, neste trabalho foram feitos experimentos de difusão efetiva utilizando microgabros sintéticos (similares a basaltos venusianos) a 460 ºC (1 atm) para investigar a eficiência da difusão em mobilizar Ar na crosta de Vênus. Foi utilizada uma fornalha vertical tubular (VTF) para fundir e cristalizar o pó de um basalto toleiítico em condições de saturação de Ar, gerando um total de 10 pérolas de microgabro saturadas em Ar. Oito dessas pérolas foram reintroduzidas na VTF (composição atmosférica controloada de 100% CO2) e em uma mufla (MF, composição do ar) simultaneamente (4 em cada forno) a 460 ºC. As duas fornalhas foram utilizadas para checar se a composição atmosférica afetaria os resultados. Alíquotas foram então removidas depois de 2, 4, 8 e 16 dias. Coeficientes de difusão efetiva (Dbulk) foram obtidos através da análise da variação de concentração de Ar nas pérolas após os experimentos. Experimentos realizados na VTF e MF tiveram resultados semelhantes. Duas soluções da equação de difusão foram utilizadas, com os melhores resultados indicando Dbulk de 3.5 x 10-13 m²/s. Os resultados indicam que difusão é um processo muito lento nas condições analisadas e que menos de 1% do Ar total teria sido removido da crosta venusiana se difusão fosse o único mecanismo de degaseificação. Portanto, os dados suportam a ideia de que vulcanismo é a principal fonte de 40Ar para a atmosfera em planetas com crostas anidras e que, de fato, deve ter havido maior atividade vulcânica na Terra que em Vênus durante as evoluções dos planetas. Finalmente, eu sugiro que a crosta de Vênus possui excesso de 40Ar e que a razão 40Ar/36Ar na atmosfera venusiana deve se tornar mais semelhante com a da Terra após o próximo evento global de produção crustal, quando magma estaria em contato direto com a atmosfera, favorecendo a degaseificação de 40Ar.Biblioteca Digitais de Teses e Dissertações da USPVlach, Silvio Roberto FariasSemêdo, Pedro de Almeida2022-04-27info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttps://www.teses.usp.br/teses/disponiveis/44/44143/tde-07062022-071135/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesseng2022-06-07T10:59:21Zoai:teses.usp.br:tde-07062022-071135Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212022-06-07T10:59:21Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false
dc.title.none.fl_str_mv Ar bulk diffusivity experiments in microgabbros with implications for the Venusian geodynamics
Experimentos de difusão efetiva de Ar em micrograbos com implicações para a geodinâmica venusiana
title Ar bulk diffusivity experiments in microgabbros with implications for the Venusian geodynamics
spellingShingle Ar bulk diffusivity experiments in microgabbros with implications for the Venusian geodynamics
Semêdo, Pedro de Almeida
Diffusion
Difusão
Experimental geochemistry
Experimental petrology
Geodinâmica
Geodynamics
Geoquímica experimental
Petrologia experimental
Venus
Vênus
title_short Ar bulk diffusivity experiments in microgabbros with implications for the Venusian geodynamics
title_full Ar bulk diffusivity experiments in microgabbros with implications for the Venusian geodynamics
title_fullStr Ar bulk diffusivity experiments in microgabbros with implications for the Venusian geodynamics
title_full_unstemmed Ar bulk diffusivity experiments in microgabbros with implications for the Venusian geodynamics
title_sort Ar bulk diffusivity experiments in microgabbros with implications for the Venusian geodynamics
author Semêdo, Pedro de Almeida
author_facet Semêdo, Pedro de Almeida
author_role author
dc.contributor.none.fl_str_mv Vlach, Silvio Roberto Farias
dc.contributor.author.fl_str_mv Semêdo, Pedro de Almeida
dc.subject.por.fl_str_mv Diffusion
Difusão
Experimental geochemistry
Experimental petrology
Geodinâmica
Geodynamics
Geoquímica experimental
Petrologia experimental
Venus
Vênus
topic Diffusion
Difusão
Experimental geochemistry
Experimental petrology
Geodinâmica
Geodynamics
Geoquímica experimental
Petrologia experimental
Venus
Vênus
description The argon geochemical system is an important tool for the planetary sciences. 40Ar is radiogenic and produced by the radioactive decay of 40K (half-life ~ 1.25 Ga) in minerals in the crust and mantle of rocky planets, while 36Ar and 38Ar are primordial. The atmospheres of Earth and Venus share similar 36Ar/38Ar ratios (5.3 and 5.5, respectively) but contrasting 40Ar/36Ar ratios (~300 vs. 1, respectively), indicating that Earth is more effective in degassing 40Ar. Because volcanism is a major 40Ar degassing agent, these data suggest higher volcanic activity through Earths evolution relative to Venus. However, diffusion is another possible 40Ar transporter from geospheres to atmospheres and the average surface temperature on Venus (460 ºC) is above the closure temperature of the gas in most silicate systems. Because there is no data concerning the diffusion of Ar in basaltic rocks, here, bulk diffusion experiments were made using synthetic microgabbros (similar to Venusian basalts) under 460 ºC (1 atm) to investigate the effectiveness of diffusion in mobilizing Ar in the crust of Venus. A vertical tubular furnace (VTF) was used to melt and crystallize a tholeiitic basalt powder under Ar saturation conditions to dope the aliquots with the gas, generating a total of ten Ar-saturated microgabbro beads. Eight of these beads were reintroduced into the VTF (100% CO2 atmosphere) and muffle furnace (MF, air composition) simultaneously (4 in each furnace) at 460ºC. The two furnace apparatuses were used to check if the atmospheric composition would alter the results. Aliquots were then removed after 2, 4, 8, and 16 days. Bulk diffusion coefficients (Dbulk) were obtained by analyzing the variation of Ar concentration in the beads after the experiments. Experiments held in the VTF and MF had similar results. Two different solutions for the diffusion equation were used, with the best results showing Dbulk values of ~ 3.5 x 10-13 m²/s. The results indicate that diffusion is very slow in the analyzed conditions and that less than 1 % of the total Ar would have been removed from the Venusian crust if diffusion was the only degassing agent. Thus, the data support the idea that volcanism is the main source 40Ar to the atmosphere in anhydrous crusts and that, indeed, Earth must have had higher volcanic activity in its history in comparison to Venus. Finally, I suggest that the crust of Venus has an excess of 40Ar and that the planets atmospheric 40Ar/36Ar ratio should become more similar to Earths after the next global resurfacing event, when magma should be in direct contact with the atmosphere, favoring the degassing of 40Ar.
publishDate 2022
dc.date.none.fl_str_mv 2022-04-27
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://www.teses.usp.br/teses/disponiveis/44/44143/tde-07062022-071135/
url https://www.teses.usp.br/teses/disponiveis/44/44143/tde-07062022-071135/
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv
dc.rights.driver.fl_str_mv Liberar o conteúdo para acesso público.
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Liberar o conteúdo para acesso público.
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.coverage.none.fl_str_mv
dc.publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
dc.source.none.fl_str_mv
reponame:Biblioteca Digital de Teses e Dissertações da USP
instname:Universidade de São Paulo (USP)
instacron:USP
instname_str Universidade de São Paulo (USP)
instacron_str USP
institution USP
reponame_str Biblioteca Digital de Teses e Dissertações da USP
collection Biblioteca Digital de Teses e Dissertações da USP
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)
repository.mail.fl_str_mv virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br
_version_ 1815256786666520576