Algoritmos genéticos adaptativos: um estudo comparativo.
Autor(a) principal: | |
---|---|
Data de Publicação: | 2000 |
Tipo de documento: | Dissertação |
Idioma: | por |
Título da fonte: | Biblioteca Digital de Teses e Dissertações da USP |
Texto Completo: | http://www.teses.usp.br/teses/disponiveis/3/3141/tde-05092001-141334/ |
Resumo: | Os Algoritmos Genéticos representam, atualmente, uma poderosa ferramenta para busca de soluções de problemas com alto nível de complexidade. Esta dissertação estuda os Meta Algoritmos Genéticos, que é uma classe de Algoritmos Genéticos, e compara-os com os Algoritmos Genéticos tradicionais. Para a realização deste estudo, foi desenvolvido um programa de computador que permite, de forma automática, a realização de testes de desempenho de várias modalidades de Algoritmos Genéticos, bem como a análise dos dados por eles gerados. Os resultados obtidos mostraram que os Meta Algoritmos Genéticos são mais estáveis, com relação ao seus parâmetros de controle, do que os Algoritmos Genéticos tradicionais. |
id |
USP_68cb48a4c2c1e58057b65f7c20ce112a |
---|---|
oai_identifier_str |
oai:teses.usp.br:tde-05092001-141334 |
network_acronym_str |
USP |
network_name_str |
Biblioteca Digital de Teses e Dissertações da USP |
repository_id_str |
2721 |
spelling |
Algoritmos genéticos adaptativos: um estudo comparativo.Genetic algorithm: a comparative study.algorithmalgoritmosgeneticgenéticosIAinteligenceinteligência artificialmaximizaçãominimization artificialoptimizationotimizaçãoOs Algoritmos Genéticos representam, atualmente, uma poderosa ferramenta para busca de soluções de problemas com alto nível de complexidade. Esta dissertação estuda os Meta Algoritmos Genéticos, que é uma classe de Algoritmos Genéticos, e compara-os com os Algoritmos Genéticos tradicionais. Para a realização deste estudo, foi desenvolvido um programa de computador que permite, de forma automática, a realização de testes de desempenho de várias modalidades de Algoritmos Genéticos, bem como a análise dos dados por eles gerados. Os resultados obtidos mostraram que os Meta Algoritmos Genéticos são mais estáveis, com relação ao seus parâmetros de controle, do que os Algoritmos Genéticos tradicionais.The Genetic Algorithms nowadays are a strong tool to find solutions in problems with high level of complexity. This dissertation studies Meta Genetic Algorithms, a particular class of Genetic Algorithms, and compares them to the usual Genetic Algorithms. This was accomplished by a computer program that automatically tests the performance of some Genetic Algorithms models and analyze the data generated by them. The results show that Meta Genetic Algorithms are more stable than usual Genetic Algorithms with relation to their control parameters.Biblioteca Digitais de Teses e Dissertações da USPRanzini, EdithBarcellos, João Carlos Holland de2000-04-07info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://www.teses.usp.br/teses/disponiveis/3/3141/tde-05092001-141334/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesspor2016-07-28T16:08:16Zoai:teses.usp.br:tde-05092001-141334Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212016-07-28T16:08:16Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false |
dc.title.none.fl_str_mv |
Algoritmos genéticos adaptativos: um estudo comparativo. Genetic algorithm: a comparative study. |
title |
Algoritmos genéticos adaptativos: um estudo comparativo. |
spellingShingle |
Algoritmos genéticos adaptativos: um estudo comparativo. Barcellos, João Carlos Holland de algorithm algoritmos genetic genéticos IA inteligence inteligência artificial maximização minimization artificial optimization otimização |
title_short |
Algoritmos genéticos adaptativos: um estudo comparativo. |
title_full |
Algoritmos genéticos adaptativos: um estudo comparativo. |
title_fullStr |
Algoritmos genéticos adaptativos: um estudo comparativo. |
title_full_unstemmed |
Algoritmos genéticos adaptativos: um estudo comparativo. |
title_sort |
Algoritmos genéticos adaptativos: um estudo comparativo. |
author |
Barcellos, João Carlos Holland de |
author_facet |
Barcellos, João Carlos Holland de |
author_role |
author |
dc.contributor.none.fl_str_mv |
Ranzini, Edith |
dc.contributor.author.fl_str_mv |
Barcellos, João Carlos Holland de |
dc.subject.por.fl_str_mv |
algorithm algoritmos genetic genéticos IA inteligence inteligência artificial maximização minimization artificial optimization otimização |
topic |
algorithm algoritmos genetic genéticos IA inteligence inteligência artificial maximização minimization artificial optimization otimização |
description |
Os Algoritmos Genéticos representam, atualmente, uma poderosa ferramenta para busca de soluções de problemas com alto nível de complexidade. Esta dissertação estuda os Meta Algoritmos Genéticos, que é uma classe de Algoritmos Genéticos, e compara-os com os Algoritmos Genéticos tradicionais. Para a realização deste estudo, foi desenvolvido um programa de computador que permite, de forma automática, a realização de testes de desempenho de várias modalidades de Algoritmos Genéticos, bem como a análise dos dados por eles gerados. Os resultados obtidos mostraram que os Meta Algoritmos Genéticos são mais estáveis, com relação ao seus parâmetros de controle, do que os Algoritmos Genéticos tradicionais. |
publishDate |
2000 |
dc.date.none.fl_str_mv |
2000-04-07 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://www.teses.usp.br/teses/disponiveis/3/3141/tde-05092001-141334/ |
url |
http://www.teses.usp.br/teses/disponiveis/3/3141/tde-05092001-141334/ |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.relation.none.fl_str_mv |
|
dc.rights.driver.fl_str_mv |
Liberar o conteúdo para acesso público. info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Liberar o conteúdo para acesso público. |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.coverage.none.fl_str_mv |
|
dc.publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações da USP instname:Universidade de São Paulo (USP) instacron:USP |
instname_str |
Universidade de São Paulo (USP) |
instacron_str |
USP |
institution |
USP |
reponame_str |
Biblioteca Digital de Teses e Dissertações da USP |
collection |
Biblioteca Digital de Teses e Dissertações da USP |
repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP) |
repository.mail.fl_str_mv |
virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br |
_version_ |
1815256742103089152 |